Return to search

Databearbetning på Ringhals

Den nya generationens digitalisering har slagit rot i samhället. Algoritmer och datamodeller styr nyhetsflödet i social media, röststyr mobilen genom att tolka rösten och självstyr bilen, helt och hållet i autonoma fordon. Inom industrierna finns det också en pågående process där machine learning kan appliceras för att öka drifttillgänglighet och minska kostnader. Det nuvarande paradigmet för att underhålla icke-säkerhetsklassade maskiner i kärnkraftindustrin är en kombination av Avhjälpande Underhåll och Förebyggande Underhåll. Avhjälpande underhåll innebär att underhålla maskinen när fel inträffar, förebyggande underhåll innebär att underhålla med periodiska intervall. Båda sätten är kostsamma för att de riskerar att under- respektive över-underhålla maskinen och blir därmed resurskrävande. Ett paradigmskifte är på väg, det stavas Prediktivt Underhåll - att kunna förutspå fel innan de inträffar och  planera underhåll därefter. Den här rapporten utforskar möjligheten att använda sig av de neurala nätverken LSTM och GRU för att kunna prognostisera eventuella skador på maskiner. Det här baseras på mätdata och historiska fel på maskinen. / The new generation of digitalization has been ingrained into society. Algorithms and data models are controlling the news feed of social media, controlling the phone by interpreting voices and controlling the car, altogether with automonous vehicles. In the industries there is also an ongoing process where machine learning is applied to increase availability and reduce costs. The current paradigm for maintaining non-critical machines in the nuclear power industry is a combination of corrective maintenance and preventive maintenance. Corrective maintenance means doing repairs on the machine upon faults, preventive maintenance means doing repairs periodically. Both ways are costly because they run the risk of under- and over-maintaining the machine and therefore becoming resource-intensive. A paradigm shift is on it's way, and it's spelled Predictive Maintenance - being able to predict faults before they happen and plan maintenance thence. This report explores the possibilities of using LSTM and GRU to forecast potential damage on machines. This is based on data from measurements and historical issues on the machine.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-39773
Date January 2019
CreatorsLindskog, Jakob, Gunnarsson, Robin
PublisherHögskolan i Halmstad, Akademin för informationsteknologi, Högskolan i Halmstad, Akademin för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds