The conventional temporal filtering approach cannot be used to separate signal from interference which occupies the same temporal frequency band as signal. Using a spatial filtering at the receiver can separate signals from interference that originates from different spatial location. Many adaptive array beamforming algorithms, based on linear constraints, have been proposed for suppressing undesired interference and being applied to wireless communication systems for multiuser detection. The adaptive array system can be employed to automatically adjust its directional to achieve the purpose that nulls the interferences or jammers and thus, enhances the reception of the desired signal. Inverse QR Decomposition Recursive Least-square (IQRD-RLS) algorithm has many advantages such as where the LS weight vector be computed without back substitution, a well known numerical stable algorithm and offering better convergence rate, steady-state means-square error, and parameter tracking capability over the adaptive least mean square (LMS) based algorithms. In this thesis, a new application, GSC-IQRD-RLS combining Generalized Sidelobe Canceller (GSC) and IQRD-RLS algorithm, is developed. It preserves the advantages of GSC such as simple structure, less computations, and converts a linearly constrained optimization problem into a standard optimum filtering problem. But the performance is equivalent between GSC-IQRD-RLS and LC-IQRD-RLS algorithms.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0711103-131747 |
Date | 11 July 2003 |
Creators | Chang, Chun-Lin |
Contributors | Shiunn-Jang Chern, Chin-Der Wann, Chiung-Hsing Chen, Hsin-Hsyong Richard Yang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0711103-131747 |
Rights | campus_withheld, Copyright information available at source archive |
Page generated in 0.0018 seconds