Deep learning has achieved promising results for automatic program repair (APR).In this paper, we revisit this topic and propose an end-to-end approach Classfix tocorrect java syntax errors. Classfix uses the RoBERTa classification model to localizethe error, and uses the RoBERTa encoder-decoder model to repair the located buggyline. Our work introduces a new localization method that enables us to fix a programwith an arbitrary length. Our approach categorises errors into symbol errors and worderrors. We conduct a large scale experiment to evaluate Classfix and the result showsClassfix is able to repair 75.5% symbol errors and 64.3% word errors. In addition,Classfix achieves 97% and 84.7% accuracy in locating symbol errors and word errors,respectively. / Deep learning har uppnått lovande resultat för automatisk programreparation (APR).I den här uppsatsen återkommer vi till det här ämnet och använder Classfix för attkorrigera javasyntaxfel. Classfix använder en RoBERTa-classification model för attlokalisera felet och en RoBERTa-encoder-decoder model för att reparera buggar.Vårt arbete introducerar en ny lokaliseringsmetod som gör att vi kan fixa programav godtycklig längd. Studien kategoriserar fel i symbolfel och ordfel. Vi genomförstorskaliga experiment för att utvärdera Classfix. Resultatet visar att Classfix kan fixa75.5% av symbolfel och 64.3% av ordfel. Dessutom uppnår Classfix 97% och 84,7% noggrannhet när det gäller att lokalisera symbolfel respektive ordfel.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-311988 |
Date | January 2022 |
Creators | Xiang, Ziyi |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:64 |
Page generated in 0.0025 seconds