The advancement of photonics technologies depends on synthesis of novel materials and processes for device fabrication. The characterization techniques of the optical, electrical and magnetic properties of the synthesized materials and devices, by non-contact, non-invasive and nondestructive methods plays a significant role in development of new photonics technologies. The research reported in this thesis focuses on two such aspects of photonic materials characterization: Magneto-Optic characterization and Spectroscopic Ellipsometry. The theoretical and experimental basis of these two techniques, and experimental data analysis are presented in two parts. In Part 1, the changes in magneto-optic parameters of FePT PS-P2VP block copolymer nanocomposites with increasing concentrations of FePt nanoparticles in the block copolymer are analyzed. We present the results of change in MO anisotropy factor with the wt% of FePt and try to analyze these changes with further experimentation. Part 2 presents the results of spectroscopic ellipsometry of group III-IV multilayered thin film materials to give their precise thicknesses and optical constants. Both these techniques are unique ways to understand novel material characteristics for future use in device development.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/613403 |
Date | January 2016 |
Creators | Neelamraju, Bharati |
Contributors | Norwood, Robert A., Gangopadhyay, Palash, McLeod, Euan |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Thesis |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0021 seconds