Return to search

Development of an Efficient Viscous Approach in a Cartesian Grid Framework and Application to Rotor-Fuselage Interaction

Despite the high cost of memory and CPU time required to resolve the boundary layer, a viscous unstructured grid solver has many advantages over a structured grid solver such as the convenience in automated grid generation and shock or vortex capturing by solution adaption. Since the geometry and flow phenomenon of a helicopter are very complex, unstructured grid-based methods are well-suited to model properly the rotor-fuselage interaction than the structured grid solver. In present study, an unstructured Cartesian grid solver is developed on the basis of the existing solver, NASCART-GT. Instead of cut-cell approach, immersed boundary approach is applied with ghost cell boundary condition, which increases the accuracy and minimizes unphysical fluctuations of the flow properties. The standard k-epsilon model by Launder and Spalding is employed for the turbulence modeling, and a new wall function approach is devised for the unstructured Cartesian grid solver. It is quite challenging and has never done before to apply wall function approach to immersed Cartesian grid. The difficulty lies in the inability to acquire smooth variation of y+ in the desired range due to the non-body-fitted cells near the solid wall. The wall function boundary condition developed in this work yields stable and reasonable solution within the accuracy of the turbulence model. The grid efficiency is also improved with respect to the conventional method. The turbulence modeling is validated and the efficiency of the developed boundary condition is tested in 2-D flow field around a flat plate, NACA0012 airfoil, axisymmetric hemispheroid, and rotorcraft applications.
For rotor modeling, an actuator disk model is chosen, since it is efficient and is widely verified in the study of the rotor-fuselage interaction. This model considers the rotor as an infinitely thin disk, which carries pressure jump across the disk and allows flow to pass through it. The full three dimensional calculations of Euler and RANS equations are performed for the GT rotor model and ROBIN configuration to test implemented actuator disk model along with the developed turbulence modeling. Finally, the characteristics of the rotor-fuselage interaction are investigated by comparing the numerical solutions with the experiments.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/11474
Date18 May 2006
CreatorsLee, Jae-doo
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format2890470 bytes, application/pdf

Page generated in 0.0024 seconds