Tire parameters play a very important role in tire performance. Depending on the driving conditions for which a given tire is designed, its parameters must be chosen appropriately (e.g., the radius of the tire, the width of the tire, material properties of different sections). Among tire characteristics, the material properties of the rubber compounds have a vital role in tire behavior. Previous studies show that the material properties of the rubber are highly dependent on temperature. Thus, a comprehensive study on the effect of the material properties of the rubber on tire performance for different temperatures as well as different road conditions is required.
In this study, a theoretical model has been developed for tire-ice interaction. The temperature changes obtained from the model are used to calculate the height of the water film created by the heat generated due to the friction force. Next, the viscous friction coefficient at the contact patch is obtained. By using the thermal balance equation at the contact patch, dry friction is obtained. Knowing the friction coefficients for the dry and wet regions, the equivalent friction coefficient is calculated. The model has been validated using experimental results for three similar tires with different rubber compounds properties. For the experimental part of this study, four tires have been selected for testing. Three of them have identical tire geometry and structure but different rubber tread compounds. Several tests were conducted for the chosen tires in three modes: free-rolling, braking, and traction. The tests were performed for two different normal loads (4 kN and 5.6 kN), two different inflation pressures (21 psi (144.8 kPa) and 28 psi (193 kPa)), and three tire temperatures levels (-10°C, -5°C, and -1 °C). The Terramechanics Rig at TMVS at Virginia Tech has been used for conducting the tests. The results from this study show the sensitivity of the magnitude of the tractive force with respect to parameters such as tire temperature, normal load, etc. The results also indicate that the tire with the lowest value of the Young modulus has the highest traction among all four tires used in this study.
The model developed can be used to predict the temperature changes at the contact patch, the tire friction force, the areas of wet and dry regions, the height of the water film for different ice temperatures, different normal loads, etc. The results from this study coincide with the obtained results from the experiments. According to the data available, tire B with the smallest value of Young modulus and the smallest value of the specific heat parameter was shown to have the highest friction coefficient in both simulation and experiment.
After validating the results using experimentally collected data, the model was used to perform a sensitivity analysis on the tire performance with respect to six material properties of the tread rubber: thermal conductivity, rubber density, Young's modulus, specific heat, roughness parameter of the rubber, and radii of spherical asperities of the rubber. The results from this study show the sensitivity of the magnitude of the friction coefficient to the rubber material properties. The friction coefficient has a direct relationship with the density of the rubber and has an inverse relationship with Young's modulus, specific heat, and roughness parameter. / Doctor of Philosophy / In order to decrease the number of deaths and injuries caused by driving on icy roads and increase the safety of the vehicle, it is important to improve the tire performance on ice. To this, understanding the effects of different tire and road parameters such as material properties of the rubber, loading condition, and temperature on the tire-ice performance is required. Tire parameters play a very important role in tire performance. Depending on the driving conditions for which a given tire is designed, its parameters must be chosen appropriately
In this project, the effects of different tire and terrain parameters such as rubber material properties on tire performance on ice using an experimental and modeling approach have been studied. For the experimental part of this study, several tests were conducted for more than 30 tires with different material properties. The results of this study show what are the most important material properties of the rubber for designing a tire with the best performance on ice.
For the modeling part of this study, a semi-analytical model was developed. The model was validated using collected experimental data and was used to predict the performance of the tire by having information about its material and physical properties. The developed model called ATIIM2.0 has several advantages. First, it is a unique model for a complete tire (not a rubber block) that can be used to predict the performance of the tire by using its material properties. In addition, this model can be connected to vehicle models to improve the performance of the vehicle in general. The model developed can be used to predict the temperature changes at the contact patch, the tire friction force, the areas of wet and dry regions, the height of the water film for different ice temperatures, different normal loads, etc. The results from this study coincide with the obtained results from the experiments.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/111783 |
Date | 18 March 2021 |
Creators | Mousavi, Hoda |
Contributors | Mechanical Engineering, Sandu, Corina, Untaroiu, Costin D., Taheri, Saied, Ferris, John B. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds