Return to search

Der Einfluss der Länge von Beobachtungszeiträumen auf die Identifizierung von Subgruppen in Online Communities

Die Verbreitung von Social Media und damit verbunden die entstehenden und wachsenden Communities im Internet führen zu einer Zunahme von auswertbaren, digitalen Spuren, die häufig öffentlich zugänglich sind. Diese lassen sich durch verschiedene analytische Verfahren wie z.B. die Methode der Sozialen Netzwerkanalyse [1] auswerten. Insbesondere Ansätze für „Community Detection“ erfreuen sich besonderer Beliebtheit, wodurch sich unter anderem innovative Untergemeinschaften und Subgruppen beispielsweise in großen „Open Source“-Projekten identifizieren lassen [2]. Im Rahmen dieser Anwendungen ergeben sich neue methodische und grundlegende Fragen, darunter die nach der Rolle der von Zeit in solchen Analysen. Während die Darstellung dynamischer Effekte (z.B. durch Animationen) die Zeit als expliziten Parameter enthält, geht die Wahl der Zeitintervalle für die Aggregation von Daten, aus denen dann Netzwerke gewonnen werden, nur implizit in die Prämissen des Verfahrens ein. Diese Effekte wurden im Gegensatz zur Analyse von Dynamik bisher kaum untersucht. Im Fall der Sozialen Netzwerkanalyse ist die Zielrepräsentation selbst nicht mehr zeitbehaftet sondern sozusagen ein „statischer Schnappschuss“, wodurch etwa zeitabhängige Interaktionsmuster nicht erkannt werden können.
(...)

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-125972
Date25 October 2013
CreatorsZeini, Sam, Göhnert, Tilman, Hecking, Tobias, Krempel, Lothar, Hoppe, H. Ulrich
ContributorsTechnische Universität Dresden, Medienzentrum
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageGerman
Typedoc-type:conferenceObject
Formatapplication/pdf
SourceT. Köhler & N. Kahnwald (Hrsg.), Online Communities: Enterprise Networks, Open Education and Global Communication: 16. Workshop GeNeMe ’13 Gemeinschaften in Neuen Medien, Dresden: TUDpress, ISBN: 978-3-944331-24-9, S. 101-112

Page generated in 0.0023 seconds