As a first aspect the thesis treats existence results of the perturbed eigenvalue problem of the 1-Laplace operator. This is done with the aid of a quite general critical point theory results with the genus as topological index. Moreover we show that the eigenvalues of the perturbed 1-Laplace operator converge to the eigenvalues of the unperturebed 1-Laplace operator when the perturbation goes to zero. As a second aspect we treat the eigenvalue problems of the vectorial 1-Laplace operator and the symmetrized 1-Laplace operator. And as a third aspect certain related parabolic problems are considered.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-161044 |
Date | 19 February 2015 |
Creators | Littig, Samuel |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Friedemann Schuricht, Prof. PhD. Jan Kristensen |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0018 seconds