Return to search

Optisches Geschwindigkeitsmesssystem zur vektoriellen Erfassung instationärer Strömungsprozesse

Die Reduzierung des Ressourcenverbrauchs und der Lärm- und Schadstoffemissionen von technischen Strömungsprozessen wie Verbrennungs- und Einspritzvorgängen ist von hoher gesellschaftlicher Bedeutung und erfordert ein tieferes Verständnis der auftretenden Strömungsphänomene. Hierfür ist die messtechnische Erfassung der Strömungen notwendig, wobei insbesondere die Strömungsgeschwindigkeit von hohem Interesse ist. Strömungsgeschwindigkeitsmessungen in dynamischen oder reaktiven Fluiden stellen jedoch hohe Anforderungen an die eingesetzte Messtechnik. Um Strömungsoszillationen und instationäre Phänomene mit kurzen Zeitskalen erfassen zu können, muss eine Messung simultan dreikomponentig und mit einer hohen Messrate von 100 kHz oder mehr erfolgen. Zur Analyse komplexer und kleinskaliger Geschwindigkeitsfelder ist eine bildgebende oder volumetrische Messung mit einer hohen örtlichen Auflösung wünschenswert. Momentan verfügbare Messsysteme genügen bisher nicht allen genannten Anforderungen. Das Ziel dieser Arbeit ist daher die Entwicklung, Charakterisierung und Qualifizierung eines geeigneten Systems zur zeitaufgelösten Erfassung instationärer Strömungsprozesse in hochdynamischen und reaktiven Fluiden.

Einen für diese Zwecke vielversprechenden Ansatz stellt die Doppler-Global-Velozimetrie (FM-DGV) dar, da diese eine berührungslose Messung mit hoher Messrate gestattet und prinzipiell auch dreikomponentige und volumetrische Messungen ermöglicht. Daher erfolgte die Entwicklung und Realisierung eines simultan dreikomponentigen FM-DGV-Systems und eines FM-DGV-Systems zur bildgebenden und volumetrischen Messung. Die aufgebauten Systeme wurden hinsichtlich ihrer Geschwindigkeitsmessunsicherheit charakterisiert. Hierbei konnte gezeigt werden, dass die resultierenden Messunsicherheiten hinreichend klein sind und der Einfluss von Brechungsindexfluktuationen auf die Messunsicherheit vernachlässigt werden kann. Die Analyse der Messunsicherheiten aufgrund von Strömungsgeschwindigkeits- und Streulichtleistungsfluktuationen erfolgte mittels eines modellbasierten Ansatzes. Dabei wurde gezeigt, dass Streulichtleistungsfluktuationen einen dominanten Beitrag zum Messunsicherheitsbudget leisten können. Um die Eignung für die simultan dreikomponentige Messung mit hoher Messrate zu demonstrieren, wurden Messungen an einem Bias-Flow-Liner (BFL) durchgeführt. Dabei gelang erstmals an einem BFL die Untersuchung des Leistungsdichtespektrums in kartesischen Koordinaten und der Nachweis eines breitbandigen Energietransfers von Energie der Schallanregung hin zur kinetischen Energie der Strömung. Zur Demonstration der Messung in reaktiven Fluiden wurde ein drallstabilisierter Gasbrenner untersucht, wie er in stationären Gasturbinen und Flugzeugtriebwerken eingesetzt wird. Hierbei konnte eine thermo-akustische Wechselwirkung zwischen der Wärmefreisetzungsrate und dem Druck nachgewiesen werden und es zeigte sich ein Zusammenhang zwischen den lokalen Geschwindigkeitsoszillationen innerhalb der Flamme und den globalen Schalldruckemissionen. Durch die bildgebende, zeit- und ortsaufgelöste Messung mit hoher Messrate konnten zudem erstmals instationäre Phänomene der Strömungsgeschwindigkeit im düsennahen Bereich einer Hochdruck-Einspritzdüse ohne Seedingzufuhr vermessen werden. Diese Entwicklungen ermöglichen weitere Untersuchungen zum stabileren Betrieb von Gasbrennern mit mageren Gemischen, ein tieferes Verständnis der Dämpfungsmechanismen an BFL und die Optimierung des Einspritzvorganges in Motoren. Somit kann perspektivisch ein Beitrag zum ressourcenschonenden, umweltfreundlichen und leisen Betrieb von technischen Strömungsmaschinen wie Flugzeugtriebwerken, stationären Gasturbinen und Verbrennungsmotoren geleistet werden. / The reduction of the consumption of resources and the noise and polluting emissions of technical flow processes such as combustion and injection processes is of high social relevance and requires a deeper understanding of the occurring flow phenomena. For this purpose the metrological acquisition of the flows is necessary, whereat especially the flow velocity is of high interest. However, flow velocity measurements in dynamic or reactive fluids make great demands on the engaged measurement techniques. In order to resolve velocity oscillations or unsteady phenomena with short timescales a simultaneous three component measurement with a high measurement rate of 100 kHz or more is required. To analyze complex and small-scale velocity fields an imaging or volumetric measurement with a high spatial resolution is desired. Currently available measurement systems do not fulfill all these requirements. Hence, the goal of this work is the development, characterization and qualification of a measurement system suitable for the temporally resolved acquisition of unsteady flow processes in highly dynamic and reactive fluids.

For this purpose the Doppler global velocimetry with laser frequency modulation (FM-DGV) represents a promising approach, since it allows a contactless measurement with high measurement rate and in principle enables simultaneous three component and volumetric measurements. Hence, as a first step a simultaneous three component FM-DGV system and a FM-DGV system for imaging and volumetric measurements were developed. Subsequently, the realized systems were characterized regarding their velocity measurement uncertainty. It was shown, that the resulting measurement uncertainty is sufficiently small and that the influence of fluctuations of the refractive index on the measurement uncertainty can be neglected. The analysis of the measurement uncertainty due to fluctuations of the flow velocity and the scattered light power was conducted using a model-based approach. It was thereby shown, that fluctuations of the scattered light power can lead to a dominant term of the uncertainty budget. In order to demonstrate the suitability for simultaneous three component measurement with high measurement rate, measurements at a bias flow liner (BFL) were conducted. Thereby for the first time at a BFL it was possible to determine the power spectral density in Cartesian coordinates and to show the broadband energy transfer from the energy of the sound excitation to the kinetic energy of the flow. To demonstrate the measurement in reactive flows, a swirl-stabilized burner was investigated, as it is used in stationary gas turbines and airplane engines. It was possible to prove a thermo-acoustic interaction between the heat release rate and the pressure and to show a correlation between the local velocity oscillations within the flame and the global sound pressure emissions. By means of the imaging, temporally and spatially resolved measurement with high measurement rate it was furthermore possible to resolve unsteady phenomena in the near-nozzle region of a high-pressure injection nozzle without the addition of tracer particles. These developments allow further investigations regarding the stable operation of gas burners with lean mixtures, a deeper understanding of the damping effects at BFL and the optimization of injection processes in engines. Consequently, it is perspectively possible to contribute to the resource-efficient, environment-friendly and quiet operation of technical flow machines as aircraft engines, stationary gas turbines and combustion engines.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-221375
Date28 March 2017
CreatorsSchlüßler, Raimund
ContributorsTechnische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Prof. Dr.-Ing. habil. Jürgen Czarske, Prof. Dr.-Ing. Ingo Röhle, ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Jakob Woisetschläger
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0029 seconds