Dans ce travail, nous avons étudié la relation entre la viscosité et la dynamique microscopique (caractérisée par le temps de relaxation structurale) d'une suspension colloïdale en fonction de la fraction volumique. Nous avons mis au point une expérience originale nous permettant de mesurer la viscosité et le temps de relaxation simultanément sur le même échantillon. La dynamique microscopique est mesurée à l'aide de techniques conventionnelles de diffusion dynamique de la lumière "multi-speckles" ; la viscosité est quant à elle obtenue en mesurant la vitesse de sédimentation de particules-sondes micrométriques. Ces mesures nous ont permis d'étendre d'au moins deux décades la gamme de viscosités à taux de cisaillement nul préalablement explorée. Nous montrons que la viscosité et le temps de relaxation structurale mesuré au pic du facteur de structure statique, sont couplés jusqu'à des fractions volumiques situées bien au-delà de la transition vers un régime surfondu. Par ailleurs, nous avons constaté que le fort accroissement du temps de relaxation à l'approche de la transition vitreuse était bien décrit par une divergence exponentielle, plutôt que par une loi de puissance critique prévue par la Théorie de Couplage des Modes (MCT). / In this work, we have investigated the relation between the viscosity and the microscopic dynamics (structural relaxation time) of colloidal suspensions, as a function of volume fraction. We have designed and implemented an original setup which allows us to measure the viscosity and the relaxation time simultaneously on the very same sample. The dynamics are measured by conventional multispeckle dynamic light scattering, while the viscosity is obtained by measuring the sedimentation velocity of micron-sized tracer particles. Our measurements extend the range of previous measurements of the zero-shear viscosity by two decades. We find that the viscosity and the relaxation time measured at the peak of the static structure factor are coupled up to deep in the supercooled regime, thereby extending previous observations that were limited to the onset of supercooling. Furthermore, we show that the steep growth of the relaxation time on approaching the glass transition is well described by an exponential divergence, rather than by a critical power law as predicted by Mode Coupling Theory (MCT).
Identifer | oai:union.ndltd.org:theses.fr/2015MONTS038 |
Date | 14 December 2015 |
Creators | Roger, Valentin |
Contributors | Montpellier, Cipelletti, Luca |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds