Nous nous intéressons à la sélection de variables en classification non supervisée par mélanges gaussiens. Ces travaux sont en particulier motivés par la classification de gènes à partir de données transcriptomes. Dans les deux parties de cette thèse, le problème est ramené à celui de la sélection de modèles.<br />Dans la première partie, le modèle proposé, généralisant celui de Raftery et Dean (2006) permet de spécifier le rôle des variables vis-à-vis du processus de classification. Ainsi les variables non significatives peuvent être dépendantes d'une partie des variables retenues pour la classification. Ces modèles sont comparés grâce à un critère de type BIC. Leur identifiabilité est établie et la consistance du critère est démontrée sous des conditions de régularité. En pratique, le statut des variables est obtenu grâce à un algorithme imbriquant deux algorithmes descendants de sélection de variables pour la classification et pour la régression linéaire. L'intérêt de cette procédure est en particulier illustré sur des données transcriptomes. Une amélioration de la modélisation du rôle des variables, consistant à répartir les variables déclarées non significatives entre celles dépendantes et celles indépendantes des variables significatives pour la classification, est ensuite proposée pour pallier une surpénalisation de certains modèles. Enfin, la technologie des puces à ADN engendrant de nombreuses données manquantes, une extension de notre procédure tenant compte de l'existence de ces valeurs manquantes est suggérée, évitant leur<br />estimation préalable.<br />Dans la seconde partie, des mélanges gaussiens de formes spécifiques sont considérés et un critère pénalisé non asymptotique est proposé pour sélectionner simultanément le nombre de composantes du mélange et l'ensemble des variables pertinentes pour la classification. Un théorème général de sélection de modèles pour l'estimation de densités par maximum de vraisemblance, proposé par Massart (2007), est utilisé pour déterminer la forme de la pénalité. Ce théorème nécessite le contrôle de l'entropie à crochets des familles de mélanges gaussiens multidimensionnels étudiées. Ce critère dépendant de constantes multiplicatives inconnues, l'heuristique dite "de la pente" est mise en oeuvre pour permettre une utilisation effective de ce critère.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00344120 |
Date | 21 November 2008 |
Creators | Maugis, Cathy |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds