Return to search

Etude de protéines de Sinorhizobium meliloti impliquées dans le contrôle du niveau de NO : modulation de la sénescence des nodules de Medicago truncatula / Study of sinorhizobium meliloti proteins involved in the control of NO level : modulation of the module senescence of Medicago truncatula

Le monoxyde d'azote (NO) est une molécule gazeuse impliquée dans de nombreux processus biologiques chez les plantes, de la germination de la graine à la mise en place de réponses à des stress abiotiques et biotiques. Dans les interactions plante/ pathogène, le NO fait partie de l'arsenal de défenses de l'hôte. En réponse, les pathogènes ont développé des mécanismes pour contrer les effets du NO. Dans la symbiose fixatrice d'azote entre la légumineuse modèle Medicago truncatula et la bactérie Sinorhizobium meliloti, du NO a été détecté durant toutes les phases de l'interaction. L'équipe avait précédemment montré que la réponse de S. meliloti au NO est nécessaire au maintien de la symbiose puisque des nodules formés par une souche mutée dans le gène hmp (le gène hmp est induit par le NO et code pour une protéine qui dégrade le NO) sénescent prématurément. Au cours de cette thèse, nous avons étudié 3 nouveaux gènes de S. meliloti induits par le NO : nnrS1, nnrS2 et norB. nnrS1 et nnrS2 codent pour deux protéines de fonction inconnue et norB code pour une NO réductase qui dégrade le NO. Nous avons montré que ces 3 protéines participent d'une part à la résistance des bactéries au NO en culture et d'autre part, au maintien de l'interaction symbiotique. Par ailleurs, nous avons montré que ces 3 protéines sont impliquées directement ou indirectement dans la dégradation du NO et des résultats préliminaires suggèrent que NnrS1 présente une activité NO réductase. De plus, nous avons montré que NnrS1 et Hmp n'agissent pas seulement sur les bactéries mais aussi sur les protéines végétales. Il était connu que dans les nodules de M. truncatula, la glutamine synthétase (GS) végétale, une enzyme clé de la symbiose, est inhibée par tyrosine nitration, une modification post-traductionnelle dépendante du NO. Nous avons montré que NnrS1 et Hmp, en modulant le niveau de NO dans les nodules, contrôlent l'activité de la GS. Enfin des expériences préliminaires montrent que d'autres protéines (bactériennes et/ou végétales) pourraient être tyrosine nitratées. / Nitric oxide (NO) is a gaseous molecule involved in a large range of biological processes in plants from the seed germination to abiotic and biotic stress responses. In plant-pathogen interactions, NO is part of the defense systems. In response, pathogens have developed mechanisms in order to counteract the NO effects. In the nitrogen fixing symbiosis between the model leguminous plant Medicago truncatula and the bacterium Sinorhizobium meliloti, NO has been detected at all stages of the symbiosis. The team had previously shown that the S. meliloti response to NO is necessary to maintain the symbiotic interaction since nodules elicited by a strain mutated in the hmp gene (hmp is induced by NO and codes for a flavohemoglobine that degrades NO) senesce prematurely. During this thesis, we have studied 3 new genes of S. meliloti whose expression is induced by NO: nnrS1, nnrS2 and norB. nnrS1 and nnrS2 encode two proteins of unknown function and norB codes for a NO reductase which degrades NO. We have shown that these 3 proteins participate on one hand in bacterial NO resistance in culture and on the other hand in maintaining the symbiotic interaction. Furthermore, we have shown that these 3 proteins are involved, directly or indirectly, in NO degradation and preliminary results suggest that NnrS1 displays a NO reductase activity. Moreover, we have shown that NnrS1 and Hmp are not only dedicated to protect bacteria against NO but also play a role on plant proteins. It was already known that, in M. truncatula nodules, the plant glutamine synthétase (GS), a key enzyme of the symbiosis is inhibited by tyrosine nitration, a NO post-translational modification. We have shown that NnrS1 and Hmp, by modulating NO levels in nodules, control the GS activity. Finally, preliminary experiments suggest that other proteins (from bacterial and/or plant origin), could be tyrosine nitrated.

Identiferoai:union.ndltd.org:theses.fr/2015TOU30283
Date16 October 2015
CreatorsBlanquet, Pauline
ContributorsToulouse 3, Bruand, Claude, Meilhoc, Eliane
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds