Return to search

La neuroinflammation dans le déclin cognitif associé aux microangiopathies cérébrales

Les microangiopathies cérébrales regroupent une large variété de maladies de petits vaisseaux dont l'étiologie diffère, mais dont l'une des principales caractéristiques est la neurodégénérescence et le déclin cognitif accompagnés par une activation de la réponse inflammatoire. Les microangiopathies cérébrales sont à l'origine des microlésions qui participeraient à la démence vasculaire (DVa) et dont la prévalence augmente dans la maladie d'Alzheimer (MA). Les démences affectent particulièrement les femmes et malheureusement, il n'existe aucun traitement curatif. L'inflammation associée aux microangiopathies cérébrales engage l'activation des microglies et le recrutement de monocytes. Ces derniers se divisent en deux sous-types, les monocytes classiques qui sont activement retrouvés au niveau des sites inflammés et contribuent à la réponse inflammatoire et les monocytes non-classiques impliqués dans le maintien de l'homéostasie vasculaire. Le rôle des monocytes non-classiques dans la pathogenèse des microangiopathies cérébrales reste cependant inconnu. Ainsi, nous postulons que les microangiopathies cérébrales modulent la cascade neurodégénérative en régulant l'inflammation et les fonctions neurovasculaires dépendamment du sexe biologique. Nous avons développé trois objectifs majeurs, à savoir l'impact des microinfarctus associés aux microangiopathies cérébrales sur l'amyloïdopathie de la MA ainsi que le rôle des monocytes non-classiques dans deux types de microangiopathies cérébrales soit les microangiopathies cérébrales sporadiques et l'angiopathie amyloïde cérébrale (AAC) associée à la MA. Bien que plusieurs études aient montré la présence de microlésions associées aux microangiopathies cérébrales dans la MA aucune ne permet de mettre en évidence une corrélation entre les deux pathologies ce qui fait donc l'objet de notre première étude. C'est pourquoi nous avons induit dans un premier temps des microinfarctus chez des souris transgéniques APP/PS1 mâles et femelles âgés de 5 mois, un âge qui représente le stade précoce de la pathologie amyloïde s'apparentant à la MA chez ces souris, et évalué l'impact sur l'amyloïdopathie, la cognition, le débit sanguin cérébral, l'inflammation et l'expression de Dickkopf-1 (DKK1) à l'aide de techniques variées. Nos résultats indiquent que l'amyloïdopathie de la MA et les microinfarctus associés aux microangiopathies cérébrales évoluent en parallèle. En effet, l'induction des microinfarctus chez les souris APP/PS1 ne développant que l'amyloïdopathie, via l'obstruction des artérioles cérébrales pénétrantes par des microemboles, réduit le dépôt d'amyloïde β (Aβ) chez les deux sexes étudiés. Ceci pourrait être le résultat de l'activation et du recrutement de cellules inflammatoires, microglies et monocytes non-classiques, retrouvées au niveau des plaques d'Aβ et des sites lésionnels associés aux microinfarctus. De plus, le blocage des artérioles perforantes impacte différemment le débit sanguin cérébral chez les deux sexes, dont sa régulation optimale est essentielle au bon fonctionnement cérébral. En effet, les mâles présentent une hypoperfusion en phase aiguë et une hyperperfusion en phase chronique après microlésions, ce qui montre une dérégulation à long terme du débit sanguin cérébral. Ceci pourrait participer aux déficits cognitifs rapides et prolongés observés. Au contraire, les femelles présentent une hypoperfusion en phase aiguë qui se normalise en phase chronique ce qui montre une dérégulation transitoire du débit sanguin cérébral et expliquerait en partie le recouvrement des capacités cognitives. D'autre part, l'expression de DKK1, une protéine jouant un rôle central dans la MA et les ischémies, est fortement induite au niveau des sites lésionnels dans le cerveau des souris mâles APP/PS1, tandis que son expression était réduite chez les femelles. Cette différence d'expression résulterait en un déclin cognitif rapide et prolongé chez les mâles et un déclin lent et transitoire chez les femelles, puisque DKK1 est une protéine inhibitrice de la voie canonique Wnt impliquée dans le maintien des fonctions cérébrales. Nos résultats suggèrent que les microinfarctus multifocaux aggravent le déclin cognitif associée à l'amyloïdopathie de la MA chez les jeunes mâles comparativement aux jeunes femelles qui sont protégées, probablement par les hormones sexuelles féminines indépendamment de la déposition de l'Aβ via la modulation du couplage neurovasculaire, de la réponse inflammatoire et de l'expression de DKK1 qui est physiologiquement réprimée par les œstrogènes. Le rôle des monocytes non-classiques retrouvés aux sites lésionnels après microangiopathies cérébrales reste méconnu et a fait l'objet des deux études suivantes. Nos investigations ont été menées sur des souris chimériques qui nous permettent de suivre les monocytes dérivés de la moelle osseuse grâce à l'expression d'un gène rapporteur, green fluorescent protein (GFP) et de manipuler leurs fonctions. Nos résultats indiquent que la dérégulation des fonctions des monocytes non-classiques exacerbe le dysfonctionnement neurovasculaire après microangiopathies cérébrales. Toutefois, leur stimulation en utilisant le muramyl dipeptide (MDP) qui est un agent immunomodulatoire synthétique, améliore les fonctions neuronales en préservant l'intégrité microvasculaire, permettant ainsi le recouvrement des capacités mnésiques. Ceci démontre que la stimulation des monocytes non-classiques pourrait être une avenue thérapeutique à explorer pour le traitement des microangiopathies cérébrales. Dans ce sens, la troisième étude dans cette thèse visait à étudier le rôle des monocytes non-classiques dans la modulation de l'AAC associée à la MA chez la souris APP/PS1. En effet, dans cette étude nous résultats montrent que la stimulation des monocytes non-classiques avec l'ARA290 qui est un analogue non-érythropoïétique durant les stades précoces de l'amyloïdopathie associée à la MA réduit l'AAC ainsi que le dépôt d'Aβ dans le parenchyme du cerveau des souris APP/PS1. Ceci a été accompagné par une amélioration des capacités cognitives des souris associée à une augmentation de la fréquence des monocytes non-classiques dans la circulation sanguine. En utilisant l'imagerie intravitale, nous avons démontré que les monocytes non-classiques sont impliqués dans l'élimination des microagrégats vasculaires d'Aβ. La déplétion spécifique des monocytes non-classiques en utilisant des souris chimériques a atténué les effets bénéfiques du ARA290. Ensemble, ces résultats nous communiquent de nouvelles informations quant au rôle des interactions immunovasculaires après microangiopathies cérébrales dans la pathobiologie et le traitement des démences. / Cerebral microangiopathies include a wide variety of diseases of the small vessels whose etiology differs, but one of their main characteristics is neurodegeneration and cognitive decline accompanied by an activation of the inflammatory response. Cerebral microangiopathies are at the origin of the microlesions that contribute to vascular dementia (VaD) and whose prevalence increases in Alzheimer's disease (AD). Dementia particularly affects women and unfortunately, there is no curative treatment. Inflammation associated with cerebral microangiopathies includes activation of microglia and recruitment of monocytes. The latter are divided into two subtypes, classical monocytes which are actively found at the inflamed sites, actively contributing to the inflammatory response, and non-classical monocytes involved in the maintenance of vascular homeostasis. The role of non-classical monocytes in the pathobiology and therapy of cerebral microangiopathies remains unknown. Thus, we postulate that cerebral microangiopathies modulate the neurodegenerative cascade by regulating inflammation and neurovascular functions depending upon the biological sex. We have developed three major objectives, namely the impact of microinfarctions associated with cerebral microangiopathies on amyloid-β (Aβ) pathology in AD as well as the role of non-classical monocytes in two types of cerebral microangiopathies, the sporadic cerebral microangiopathies and cerebral amyloid angiopathy (CAA) associated with AD. Although several studies have outlined the presence of microlesions associated with cerebral microangiopathies in AD, none allows assessing the correlation between the two pathologies, which is therefore the subject of our first study. For this purpose, we induced first microinfarcts in 5-month-old male and female APP/PS1 transgenic mice, an age representing the early stage of AD-like pathology in these mice, and evaluated the impact on Aβ pathology, cognition, cerebral blood flow (CBF), inflammation, and Dickkopf-1 (DKK1) expression using of various techniques. Our results indicate that Aβ pathology and microinfarcts associated with cerebral microangiopathies evolve in parallel. Indeed, the induction of microinfarcts in APP/PS1 mice developing only Aβ pathology, via the obstruction of penetrating cerebral arterioles by microemboli, attenuates Aβ deposition in both sexes studied. This could be the result of the activation and recruitment of inflammatory cells, microglia and non-classical monocytes, found at the level of Aβ plaques and lesion sites associated with microinfarctions. In addition, blockage of perforating arterioles impacts differently the CBF in the two sexes, whose optimal regulation is essential for cerebral functions. Indeed, males exhibit acute-phase hypoperfusion and chronic-phase hyperperfusion after microlesions, indicating long-term deregulation of the CBF. This could contribute to the rapid and prolonged cognitive deficits observed. In contrast, female mice exhibit hypoperfusion in the acute phase that normalizes in the chronic phase, outlining a transient deregulation of the CBF and would partly explain the recovery of cognitive abilities. On the other hand, the expression of DKK1, a protein playing a central role in AD and ischemic injury, is strongly induced at the lesion sites in the brain of male APP/ PS1, while its expression was reduced in females. This difference in expression would result in a prolonged cognitive decline in males and a slow and transient decline in females, as DKK1 is an inhibitor of the canonical Wnt pathway involved in maintaining cerebral functions. Our results suggest that multifocal microinfarcts worsen cognitive decline associated with amyloid Aβ pathology in AD in young males compared to young females who are protected, probably by female sex hormones independently of amyloid deposition via modulation of neurovascular coupling, inflammation, and expression of DKK1 that is physiologically repressed by estrogens. The role of non-classical monocytes found at the lesion sites after cerebral microangiopathy remains unknown and was the subject of the two following studies. Our investigations were carried out in chimeric mice which allow tracking monocytes derived from the bone marrow through the expression of a reporter gene, green fluorescent protein (GFP) and to manipulate their functions. Our results indicate that deregulation of the function of non-classical monocytes exacerbates neurovascular dysfunction following cerebral microangiopathies. However, their stimulation using muramyl dipeptide (MDP), which is a synthetic immunomodulatory agent, improves neuronal functions by preserving microvascular integrity, thus allowing the recovery of memory capacities. This demonstrates that stimulation of non-classical monocytes could be a therapeutic avenue to explore for the treatment of cerebral microangiopathies. In this direction, the third study in this thesis aims to investigate the role of non-classical monocytes in the modulation of CAA associated with AD in APP/PS1 mice. Indeed, in this study our results show that stimulation of non-classical monocytes using ARA290 that is a non-erythropoietic analogue during the early stages of Aβ pathology in AD, reduces CAA as well as Aβ deposition in the brain parenchyma of APP/PS1 mice. This was accompanied by an improved cognitive capacity of APP/PS1 mice associated with an increased frequency of non-classical monocytes in the blood circulation. Using intravital imaging, we demonstrated that non-classical monocytes are involved in the clearance of vascular Aβ microaggregates. Specific depletion of non-classical monocytes using chimeric mice attenuated the beneficial effects of ARA290. Together, these results allow us to provide new insights into the role of immune-vascular interactions after cerebral microangiopathies in the pathobiology and treatment of dementia.

Identiferoai:union.ndltd.org:LAVAL/oai:https://corpus.ulaval.ca:20.500.11794/102264
Date18 October 2022
CreatorsLecordier, Sarah Claire Marie
ContributorsElAli, Ayman
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxii, 261 pages), application/pdf

Page generated in 0.0029 seconds