Return to search

Accelerated carbonation of hazardous wastes

Accelerated carbonation involves exposing a material to a concentrated atmosphere of carbon dioxide, and can be used to treat hazardous wastes and soils and create new construction materials. The present work examines the use of accelerated carbonation to reduce the hazardous properties of wastes as a means of reducing the costs of disposal to landfill, and then develops the process to manufacture aggregate from the waste removing it from landfill disposal completely . A range of thermal wastes, including those from cement, metallurgical and paper processes, were found to be reactive with carbon dioxide. Many of these wastes are hazardous on account of their alkaline pH, which carbonation partially neutralizes, effectively allowing reclassification of the materials as stable non-reactive hazardous wastes under the Landfill Regulations. Cement and paper wastes were highly reactive with carbon dioxide, and were considered for use as cement substitutes to reconstitute non-reactive wastes into aggregate. Previous work had suggested that carbonation and pelletising were not compatible due to differing optimum conditions. This issue was investigated by considering the effects of the mix formulations and machinery parameters. The pelletising and carbonation processes require widely different moisture contents. The disparity is due to the need for total saturation of the material to form bonds between grains during pelletising, and an open pore network for carbon dioxide to penetrate. To achieve the two simultaneously, several methods were investigated. Chemical catalysts including sodium hypochlorite and sodium sulfite increased carbonation in a saturated material. However, curing the formed aggregates in carbon dioxide was found to be the most economic solution. A pilot scale process was developed based upon the laboratory results. A bespoke rotary carbonation reactor was developed to produce aggregate in bulk for commercial testing. Aggregate which was subjected to accelerated carbonation, has enhanced strength and durability compared to aggregate exposed to natural carbonation. The aggregate was successfully used to produce lightweight concrete with comparable strength to concrete made from commercial lightweight aggregate. Aggregate was also supplied for a research project to investigate the use of recycled materials as a horticultural growing medium.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:547162
Date January 2011
CreatorsGunning, Peter John
ContributorsHills, Colin ; Carey, Paula
PublisherUniversity of Greenwich
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://gala.gre.ac.uk/7135/

Page generated in 0.011 seconds