Return to search

Spectrum Opportunity Duration Assurance: A Primary-Secondary Cooperation Approach for Spectrum Sharing Systems

The radio spectrum dependent applications are facing a huge scarcity of the resource. To address this issue, future wireless systems require new wireless network architectures and new approaches to spectrum management. Spectrum sharing has emerged as a promising solution to address the radio frequency (RF) spectrum bottleneck. Although spectrum sharing is intended to provide flexible use of the spectrum, the architecture of the existing approaches, such as TV White Space [1] and Citizen Broadband Radio Services (CBRS) [2], have a relatively fixed sharing framework. This fixed structure limits the applicability of the architecture to other bands where the relationship between various new users and different types of legacy users co-exist. Specifically, an important aspect of sharing that has not been explored enough is the cooperation between the resource owner and the opportunistic user. Also in a shared spectrum system, the users do not have any information about the availability and duration of the available spectrum opportunities. This lack of understanding about the shared spectrum leads the research community to explore a number of core spectrum sharing tasks, such as opportunity detection, dynamic opportunity scheduling, and interference protection for the primary users, etc. This report proposes a Primary-Secondary Cooperation Framework to provide flexibility to all the involved parties in terms of choosing the level of cooperation that allow them to satisfy different objective priorities. The cooperation framework allows exchange of a probabilistic assurance: Spectrum Opportunity Duration Assurance (SODA) between the primary and secondary operations to improve the overall spectrum sharing experience for both the parties. This capability will give the spectrum sharing architectures new flexibility to handle evolutions in technologies, regulations, and the requirements of new bands being transitioned from fixed to share usage.

In this dissertation we first look into the regulatory aspect of spectrum sharing. We analyze the Federal Communications Commission's (FCC) initiatives with regards to the commercial use of the 150 MHz spectrum block in the 3.5 GHz band. This analysis results into a Spectrum Access System (SAS) architecture and list of required functionalities. Then we address the nature of primary-secondary cooperation in spectrum sharing and propose to generate probabilistic assurances for spectrum opportunities. We use the generated assurance to observe the impact of cooperation from the perspective of spectrum sharing system management. We propose to incorporate primary user cooperation in the auctioning and resource allocation procedures to manage spectrum opportunities. We also analyze the improvement in spectrum sharing experience from the perspective of the primary and secondary users as a result of cooperation. We propose interference avoidance schemes that involve cooperation to improve the achievable quality of service.

Primary-secondary cooperation has the potential to significantly influence the mechanism and outcomes of the spectrum sharing systems. Both the primary and secondary operations can benefit from cooperation in a sharing scenario. Based on the priorities of the primary and secondary operations, the users may decide on the level of cooperation that they are willing to participate. Also access to information about the availability and usability of the spectrum opportunity will result in efficient spectrum opportunity management and improved sharing performance for both the primary and secondary users. Thus offering assurances about the availability and duration of spectrum opportunity through primary-secondary cooperation will significantly improve the overall spectrum sharing experience. The research reported in this dissertation is expected to provide a fundamental analytical framework for characterizing and quantifying the implications of primary-secondary cooperation in a spectrum sharing context. It analyzes the technical challenges in modeling different level of cooperation and their impact on the spectrum sharing experience. We hope that this dissertation will establish the fundamentals of the spectrum sharing to allow the involved parties to participate in sharing mechanisms that is suitable to their objective priorities. / PHD / As the world of technology steps into the era of ubiquitous communication to anything and everything, a system's ability to wirelessly communicate in a heterogeneous environment plays a significant role in shaping our ways of life. The wireless communication systems and standards are evolving at an unprecedented rate to cope up with the explosive growth for uninterrupted mobile broadband service demand and the increasing diversity of high quality of service (QoS) use cases ranging from social communication and professional networking to cyber security and public safety. The rapid evolution of wireless communication systems and service applications has resulted in high demand for new and dedicated spectrum blocks in both the licensed and unlicensed bands. Also the predicted future wireless systems and applications indicate important characteristics of future broadband traffic demand: nomadic and sporadic bursty demand. But the existing static spectrum assignment limits the potential of the radio frequency spectrum resource. It imposes the challenge of spectrum scarcity onto radio spectrum dependent applications and technologies. This unprecedented increase in mobile data traffic along with the nomadic and sporadic bursts in data demand will disruptively shape the spectrum usage philosophy of the future wireless communication networks. It calls for new wireless network architectures and new approaches to spectrum management. Spectrum sharing has emerged as a promising solution to address the radio frequency (RF) spectrum bottleneck. Although spectrum sharing is intended to provide flexible use of the spectrum, the architecture of the existing approaches have a relatively fixed structure in the mechanism for which spectrum is shared. This fixed structure limits the applicability of the architecture to other bands where the relationship between various new users and different types of legacy users co-exist. Specifically, an important aspect of sharing that has not been explored enough is the cooperation between the resource owner and the opportunistic user. Also in a shared spectrum system, the users do not have any information about the availability and duration of the available spectrum opportunities. This lack of understanding about the shared spectrum leads the research community to explore a number of core spectrum sharing tasks, such as opportunity detection, dynamic opportunity scheduling, and interference protection for the primary users, etc.

In this dissertation we propose a Primary-Secondary Cooperation Framework that provides flexibility to all the involved parties in terms of choosing the level of cooperation and allow them to satisfy different objective priorities. The cooperation framework allows exchange of a probabilistic assurance: Spectrum Opportunity Duration Assurance (SODA) between the primary and secondary operations to improve the overall spectrum sharing experience for both the parties. This capability will give the spectrum sharing architectures new flexibility to handle evolutions in technologies, regulations, and the requirements of new bands being transitioned from fixed to share usage. Based on their operational priorities, the users may decide on the level of cooperation that they are willing to participate. Also access to information about the availability and usability of the spectrum opportunity influences the mechanism and outcomes of the spectrum sharing systems to benefit both the Primary and Secondary users. Thus offering assurances about the availability and duration of spectrum opportunity through primary-secondary cooperation will significantly improve the overall spectrum sharing experience. The research reported in this dissertation is expected to provide a fundamental analytical framework for characterizing and quantifying the implications of primary-secondary cooperation in a spectrum sharing context. It analyzes the technical challenges in modeling different level of cooperation and their impact on the spectrum sharing experience. We hope that this dissertation will establish the fundamentals of the spectrum sharing to allow the involved parties to participate in sharing mechanisms that is suitable to their objective priorities.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/88018
Date05 September 2017
CreatorsSohul, Munawwar Mahmud
ContributorsElectrical and Computer Engineering, Reed, Jeffrey H., Rahman, Saifur, Roan, Michael J., MacKenzie, Allen B., Clancy, Thomas Charles III
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0029 seconds