Dans la première partie de cette thèse, on étudie, sur une variété compacte M, le problème de Yamabe avec singularités. Ce problème consiste à chercher une métrique riemannienne conforme à g de courbure scalaire constante, sachant que la métrique g n'a pas la régularité habituelle (elle peut être de classe C^1). Le cas équivariant est également considéré. Pour le résoudre, on commence par étudier les équations de type Yamabe. On montre que les propriétés connues dans le cas C^\infty (le problème de Yamabe) sont encore valides dans notre cas. Sous certaines hypothèses, on montre l'existence et l'unicité des solutions pour le problème de Yamabe avec singularités.<br />La seconde partie de la thèse est consacrée à l'étude de la conjecture de Hebey-Vaugon, énoncée dans le cadre du problème de Yamabe équivariant. On montre que la conjecture est vraie dans certains nouveaux cas, après avoir généralisé un théorème de T. Aubin.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00422095 |
Date | 29 September 2009 |
Creators | Madani, Farid |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds