Return to search

Modélisation probabiliste en finance et en biologie - Théorèmes limites et applications

C'est le souci d'une modélisation mathématique à la fois précise et maniable qui constitue le dénominateur commun à ces travaux de thèse. Nous nous sommes en particulier intéressés à deux champs d'application des probabilités les marchés financiers et la biologie. Le premier chapitre détaille nos motivations. Il résume nos principaux résultats, les compare aux travaux existants et suggère des extensions possibles. Au deuxième chapitre, suite aux articles de Talay et Tubaro (1990) et Bally et Talay (1996), nous mesurons l'erreur que l'on commet lorsque l'on approche la loi de la solution d'une équation différentielle stochastique par celle de son schéma d'Euler. Sous hypothèse d'ellipticité, l'utilisation conjointe de techniques probabilistes et analytiques nous permet d'obtenir un développement limité fonctionnel, dans des espaces de fonctions très régulières de type noyau gaussien, du "noyau de transition" du schéma d'Euler, en fonction du pas de temps de discrétisation. Ce résultat trouve une application naturelle en mathématiques financières. Il donne la vitesse de convergence des prix, deltas et gammas d'options européennes pour une classe extrêmement large de payoffs. Il nous permet aussi de construire, au chapitre 3, dans l'analyse d'un modèle à volatilité stochastique proposé par Fouque, Papanicolaou et Sircar (2000), un algorithme d'évaluation et de couverture des options européennes dans lequel l'équilibre entre l'erreur statistique, due à l'échantillonnage "Monte-Carlo", et l'erreur de discrétisation temporelle est assuré de manière adaptative. Enfin, le dernier chapitre a pour thème le vieillissement cellulaire et est le fruit d'une coopération avec des biologistes de la Faculté de Médecine Necker à Paris. Les données expérimentales se présentent sous forme d'un arbre binaire de taux de croissance, à partir duquel nos collègues biologistes souhaitent détecter deux sous populations. Pour expliquer ces données, nous proposons un modèle autorégressif avec bifurcation, généralisant celui proposé par Cowan et Staudte en 1986, puis construisons et implémentons des procédures permettant d'estimer des paramètres et de tester des hypothèses biologiques. Pour ce faire, nous introduisons le concept de "chaînes de Markov bifurcantes", prouvons que cette famille de processus stochastiques satisfait des théorèmes limites originaux que nous appliquons au modèle et confrontons aux données, confirmant l'intuition et les calculs préliminaires des biologistes.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00001995
Date07 1900
CreatorsGuyon, Julien
PublisherEcole des Ponts ParisTech
Source SetsCCSD theses-EN-ligne, France
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds