Return to search

A General Pseudospectral Formulation Of A Class Of Sturm-liouville Systems

In this thesis, a general pseudospectral formulation for a class of Sturm-Liouville eigenvalue problems is consructed. It is shown that almost all, regular or singular, Sturm-Liouville eigenvalue problems in the Schr&ouml / dinger form may be transformed into a more tractable form. This tractable form will be called here a weighted equation of hypergeometric type with a perturbation (WEHTP) since the non-weighted and unperturbed part of it is known as the equation
of hypergeometric type (EHT). It is well known that the EHT has polynomial solutions which form a basis for the Hilbert space of square integrable functions. Pseudospectral methods based on this natural expansion basis are constructed to approximate the eigenvalues of WEHTP, and hence the energy eigenvalues of the Schr&ouml / dinger equation. Exemplary computations are performed to support the convergence numerically.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612435/index.pdf
Date01 September 2010
CreatorsAlici, Haydar
ContributorsTaseli, Hasan
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0022 seconds