Return to search

New Challenge in Octupolar Architecturs for Nonlinear Optic (NLO)

The design of nonlinear optical (NLO) molecules has become a focus of current research in telecommunications, information technologies and optical data storage. Donor-acceptor substituted dipolar molecules have been the most investigated NLO chromophores. Dipolar molecules, however, have several limitations such as low optical transparency, low thermal stability and their strong tendency to adopt anti-parallel packing in the solid state. Recently, a new class of materials based on octupolar symmetries, which lack permanent dipole moments, has been proposed for NLO applications. At a structural level, it can be shown that the basic template for 3D octupolar molecules comes to a cube with alternating charges at the corners such as donor and acceptor substituent. Despite all the various structures reported, it is worth noting that no molecules actually representing the "real" octupolar cube have been obtained so far. In this thesis, we showed that the real octupolar cube can be demonstrated by lanthanide III complexes based on ABAB type phthalocyanine featuring alternating electron donor and electron acceptor groups. These structures are characterized by UV-NIR, X-Ray and exhibit highest quadratic hyperpolarizability ever reported for an octupolar molecule. Moreover, this work was extended to nonoctupolar lanthanide homoleptic double-decker complexes based on AB3, A4, B4, T4 type phthalocyanines. It was observed that these molecules present a quite large quadratic hyperpolarizability too, but smaller than the one obtained for the Ln(ABAB)2 series, as expected.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00741371
Date10 September 2012
CreatorsAyhan, Mehmet Menaf
PublisherEcole normale supérieure de lyon - ENS LYON
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0021 seconds