Return to search

Flexibility Options in Energy Systems: The influence of Wind - PV ratios and sector coupling on optimal combinations of flexible technologies in a European electricity system

Within the present work, the main objective is to identify interactions between flexibility demand and flexibility supply. Therefore, three research fields regarding the future transformation of the European energy system are addressed. First, an expansion of intermittent renewable energy sources (iRES) is discussed taking the potentials of wind and PV technologies into account. The analysis is based on fundamental considerations of generation characteristics as well as available potentials across 17 countries in central-western Europe. To emphasis the differences in electricity generation between wind and PV, an iRES expansion model is developed coping for geographically highly resolved weather data as well as for limitations of iRES potentials due to land-use restrictions and for energy-policy constraints. Three scenarios with varying Wind-PV ratio in total iRES electricity generation are evaluated. Second, the options to provide flexibility to balance the flexibility demand are introduced and mathematically implemented in ELTRAMOD. Therefore, the model was adjusted to represent multiple flexible technologies for upward, downward and shifting flexibility provision to cover the residual load. In a system perspective and a greenfield approach, the linear electricity market model enables the analysis of cost-optimal combinations of flexibility options against the background of scenarios with different flexibility demands. In addition, the third research field addresses the emerging developments of sector coupling by including selected Power-to-X technologies. A second scenario dimension analyses the role of energy storages in the energy end-use sectors for a more flexible sector coupling. The results underline the importance of the Wind-PV ratios in electricity generation when assessing flexibility demand and flexibility supply in model-based energy system analysis. Due to the higher seasonality of PV, the residual load parameter indicate higher iRES integration challenges in terms of flexible capacity requirements. Particularly the provision of spatial and temporal balancing flexibility is significantly influenced by a higher wind or a higher PV share in the iRES mix. With sector coupling, the value of temporal shifting is increasing. Hourly storages are not only highly sensitive to the Wind-PV ratio, but in addition strongly impacted by sector coupling. In both dimensions, a higher PV share is increasing the value for short-term shifting. Furthermore, sector coupling increases the need for additional electricity generation. Thereby, for peak-load capacity provision gas-fuelled power plant are optimal in the present work increasing the total emissions especially with higher PV shares. The sensitivity analysis shows the value of additional iRES capacities as well as of storage cost reductions to further reduce emissions.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:78129
Date01 March 2022
CreatorsZöphel, Christoph
ContributorsMöst, Dominik, Bocklisch, Thilo, Technische Universität Dresden, Fakultät der Wirtschaftswissenschaften
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:14-qucosa-141575, qucosa:27970

Page generated in 0.0018 seconds