Return to search

Sensitivity Study on Modification of Vertical Distribution of Strength and Stiffness in Wood Shear Wall Building Models

This thesis presents a numerical study of the influence of varying story strength on the seismic performance of multi-story wood-frame shear wall buildings. In the prior FEMA P695 studies of these buildings, the non-simulated collapse limit-state was exceeded primarily in the first story. This observation raised interest in quantifying the influence of varying strength from story to story on seismic response.

In this study, four distributions of strength are used as bounding cases. The Parabolic strength distribution (1) results from the ELF vertical force distribution method in ASCE 7 that assigns forces to each level based on weight and story height. The Triangular strength distribution (2) results from an assumed vertical force distribution that assigns lateral forces based on the seismic weight at each level. The Constant strength distribution (3) results from an assumed vertical force distribution that assigns a concentrated lateral force at the uppermost level based on the total seismic weight of all levels. The Baseline distribution (4) reflects a realistic vertical strength distribution resulting from the ELF vertical force distribution method.

The FEMA P695 methodology, which quantifies seismic performance via adjusted collapse margin ratios, is employed in this study. The analytical models include P-Delta effects and utilize the 10-parameter hysteresis CASHEW model. It is observed that the Parabolic strength distribution allows for dissipation of energy over the height of the building, has less collapse risk than other strength distributions studied, and reduces occurrence of concentrated deformations in a single story from the onset of applied lateral force. / MS / Multi-story wood-frame buildings are becoming increasingly common, especially in areas like the western United States. Past earthquakes have shown that multi-story wood-frame buildings that have a soft and weak first story relative to upper stories are vulnerable to collapsing on the first story. This vulnerability has raised interest in understanding how the relative strength of each story of a wood building affects its performance in an earthquake.

This thesis studies four strength distribution cases. The first three cases are called the Parabolic, Triangular and Constant strength distributions named after the shape of the building’s story to story strength profile. For example, the Triangular case has the least amount of strength on the top story, which increases linearly in the lower stories down to the first story, which has the greatest strength. The fourth case, called the Baseline case, is based on actual building designs. All four strength distribution cases have the same first story strength.

Two evaluation methods are used to test the strength distribution cases. The first, known as a pushover analysis, applies lateral forces to the building until the roof reaches a specified displacement. The second, called an incremental dynamic analysis, subjects the building to increasingly intense earthquakes until a certain amount of displacement is reached in any story. The results of these analyses showed that the Parabolic strength distribution most effectively used the strength available in every story of the building to delay the onset of collapse and to distribute the location of the collapse story.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/96023
Date26 June 2018
CreatorsPerry, Logan Andrew
ContributorsCivil and Environmental Engineering, Charney, Finley A., Line, Philip, Hindman, Daniel P., Eatherton, Matthew R.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0025 seconds