Return to search

Epileptic Seizure Detection and Control in the Internet of Medical Things (IoMT) Framework

Epilepsy affects up to 1% of the world's population and approximately 2.5 million people in the United States. A considerable portion (30%) of epilepsy patients are refractory to antiepileptic drugs (AEDs), and surgery can not be an effective candidate if the focus of the seizure is on the eloquent cortex. To overcome the problems with existing solutions, a notable portion of biomedical research is focused on developing an implantable or wearable system for automated seizure detection and control. Seizure detection algorithms based on signal rejection algorithms (SRA), deep neural networks (DNN), and neighborhood component analysis (NCA) have been proposed in the IoMT framework. The algorithms proposed in this work have been validated with both scalp and intracranial electroencephalography (EEG, icEEG), and demonstrate high classification accuracy, sensitivity, and specificity. The occurrence of seizure can be controlled by direct drug injection into the epileptogenic zone, which enhances the efficacy of the AEDs. Piezoelectric and electromagnetic micropumps have been explored for the use of a drug delivery unit, as they provide accurate drug flow and reduce power consumption. The reduction in power consumption as a result of minimal circuitry employed by the drug delivery system is making it suitable for practical biomedical applications. The IoMT inclusion enables remote health activity monitoring, remote data sharing, and access, which advances the current healthcare modality for epilepsy considerably.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1703334
Date05 1900
CreatorsSayeed, Md Abu
ContributorsMohanty, Saraju P., Kougianos, Elias, Yang, Qing, Zhao, Hui
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatx, 81 pages, Text
RightsPublic, Sayeed, Md Abu, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0018 seconds