La motivation principale de cette thèse est de faire face à l'accroissement de la complexité des systèmes informatiques, qui, dans un futur proche ( de l'ordre de quelques années) risque fort d'être le principal frein à leur évolution et à leur développement. Aujourd'hui la tendance s'inverse et le coût de gestion humaine dépasse le coût des infrastructures matérielles et logicielles. De plus, l'administration manuelle de grands systèmes (applications distribuées, réseaux de capteurs, équipements réseaux) est non seulement lente mais aussi sujette à de nombreuses erreurs humaines. Un des domaines de recherche émergent est celui de l'informatique autonomique qui a pour but de rendre ces systèmes auto-gérés. Nous proposons une approche qui permet de décrire des politiques de gestion autonomiques de haut niveau. Ces politiques permettent au système d'assurer quatre propriétés fondamentales de l'auto-gestion: l'auto-guérison, l'auto-configuration, l'auto-protection et l'auto-optimisation. Nos contributions portent sur la spécification de diagrammes de description de politiques de gestion autonomiques appelés (S)PDD "(Sensor) Policy Description Diagrams". Ces diagrammes sont implémentés dans le gestionnaire autonomique TUNe et l'approche a été validée sur de nombreux systèmes: simulation électromagnétique répartie sur grille de calcul, réseaux de capteurs SunSPOT, répartiteur de calcul DIET. Une deuxième partie présente une modélisation mathématique de l’auto-optimisation pour un « datacenter ». Nous introduisons un problème de minimisation d’un critère intégrant d’une part la consommation électrique des équipements du réseau du « datacenter » et d’autre part la qualité de service des applications déployées sur le « datacenter ». Une heuristique permet de prendre en compte les contraintes dues aux fonctions de routage utilisées. / The main challenge of this thesis is to cope with the growing complexity of IT systems. In a near future (mainly the next few years) this complexity will prevent new developments and system evolutions. Today the trend is reversing and the managing costs are overtaking the hardware and software costs. Moreover, the manual administration of large systems (distributed applications, sensor networks, and network equipment) is not only slow but error-prone. An emerging research field called autonomic computing tries to bring up self-managed systems. We introduce an approach that enable the description of high level autonomic management policies. These policies allow the system to ensure four fundamental properties for self-management: self-healing, self-self-configuring, self-protecting and self-optimizing. We specify autonomic management Policy Description Diagrams (PDD) and implement them in Toulouse University Network (TUNe). We validated our approach on many systems: electromagnetic simulations distributed on computer grids (grid’5000), wireless sensor networks with SunSPOTs and the computing scheduler DIET. A second part of this thesis presents a mathematical modeling for self-optimizing datacenters. We introduce a minimization problem with a criterion integrating both the electrical consumption of the datacenter networking equipment and the quality of service of the deployed applications. A heuristic takes into account the routing functions used on the network.
Identifer | oai:union.ndltd.org:theses.fr/2010INPT0096 |
Date | 08 December 2010 |
Creators | Sharrock, Rémi |
Contributors | Toulouse, INPT, Monteil, Thierry, Stolf, Patricia |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds