Return to search

Paleoclimate reconstructionfrom climate proxiesby neural methods

In the present work, we investigate the capacity of machine learning to reconstruct simulated large scale surface temperature anomalies given a sparse observation field. Several methods are combined: self-organizing maps and recurrent neural networks of the temporal trajectory. To evaluate our global scale reconstruction, we base our validation on global climate indices time series and EOF analysis. In our experiments, the obtained reconstructions of the global surface temperature anomalies provide a good correlation (over 90%) with the target values when considering scarce available observations sampling about 0.5% of the globe. We reconstruct the surface temperature anomaly fields from 0.05% of total number of data points. We obtain an RMSE of 0.39°C. We further validate the quality of the results calculating a correlation of 0.92, 0.97 and 0.98 between the reconstructed and target indices of AMO, ENSO and IPO. / Klimatsystemet består av olika komponenter inklusive atmosfären, havet och jorden. Som ett öppet system utbyter det hela tiden energi med resten av universum. Det är också ett dynamiskt system vars utveckling kan förutsägas av kända fysiska lagar. Interaktionen mellan dess olika komponenter leder till en så kallad naturlig variation. Denna variabilitet återspeglas i form av svängningslägen, inklusive AMO, ENSO och IPO. För att studera dessa variationer har vi klimatmodeller som representerar de olika krafterna och deras effekt på klimatförändringar på lång sikt. I detta sammanhang är variationerna i det förflutna klimatet särskilt intressanta och tillåter oss en bättre förståelse av klimatförändringar och bättre förutsäga den framtida utvecklingen. Men för att studera det förflutna klimatet eller paleoklimat är den enda tillgängliga informationen endast fullständig under de senaste 150 åren. Innan dess är de enda tillgängliga indikatorerna naturliga, kallad klimatproxy, som trädringar eller iskärnor. Vi kan härleda tidsserier med klimatdata, till exempel temperatur. Denna information är emellertid knappast tillfälligt såväl som över hela världen. Återskapa det globala klimatet från sådana data hanteras fortfarande dåligt. Länken mellan lokal information och global klimat studeras här med hjälp av statistiska metoder, inklusive neurala nätverk. Det långsiktiga målet med denna studie är att bygga en metod för att rekonstruera paleoklimatet från data om klimatproxy, vi fokuserar inledningsvis på rekonstruktionen av ett så kallat perfekt klimat, det vill säga en modell som endast tar hänsyn till naturlig variation, från rumsligt sällsynta tidsserier. De studerade uppgifterna är de från globala yttemperaturutgångar från den havsatmosfärkopplade IPSL-modellen. Uppgifterna förbehandlas för att ta bort säsongens genomsnittliga cykel och omvandlas till temperaturavvikelser. Dessutom väljs rutnätpunkter som representerar information om proxyer pseudo-slumpmässigt, med respekt för den verkliga dispositionen av dessa, övervägande i norr på kontinenterna. Uppgifterna delas upp i träningsdata (150 år), validering (30 år) och testdata (120 år). De metoder som används kombinerar (1) självorganiserande kartor och hierarkisk stigande klassificering, användbara för att producera en reducerad storlek av inmatningsdata, här baserat på tidskorrelationen mellan temperaturutvecklingen under 150 år, (2) ItCompSOM använder korrelationen mellan klasser erhållna genom självorganiserande kartor för att rekonstruera obevakad data, (3) återkommande nervnätverk för att förklara den temporära komponenten i data och förbättra den tidigare rekonstruktionen. Slutligen är definitionen av nya mätvärden nödvändig för att validera de föreslagna modellerna. Utvärderingen av produkterna görs således genom temporär rekonstruktion av AMO, ENSO, IPO klimatlägen samt genom projicering av huvudkomponenterna i analysen av huvudkomponenterna i inputdata. Således konstrueras en reducerad modell av globala temperaturdata baserad på 150 års fullständiga data först, vilket reducerar den rumsliga informationen från 9216 rutnätpunkter till 191 regioner associerade med 1 medelvärde vardera. För att ansluta denna modell till tidssekvenser av sällsynta temperaturer i världen antas det att varje klass som innefattar minst en observerad proxy-data är känd. Rekonstruktionen av globala yttemperaturutvecklingar med ItCompSOM ger en korrelation till indexen på mer än 90% för endast 0,5% av de initiala observationerna. Detta resultat förbättras kraftigt tack vare återkommande nervnätverk, vilket leder till en korrelation av 0,92, 0,97 respektive 0,98 för AMO, ENSO och IPO med endast 0,05% av observationerna. Dessa poäng förklaras med den använda metoden, regionaliseringen hjälper till att koncentrera informationen. Medan 0,5% av rutpunkterna är lika med 43 poäng, om de är korrekt fördelade, representerar de 22% av informationen om regionerna (43 av 191). Dessa mycket uppmuntrande resultat återstår att tillämpas på verkliga klimatproblem, det vill säga med hänsyn till å ena sidan den externa och antropologiska kraften, osäkerheterna relaterade till de verkliga uppgifterna om ombud å andrasidan.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-263807
Date January 2019
CreatorsDéchelle-Marquet, Marie
PublisherKTH, Hållbar utveckling, miljövetenskap och teknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ABE-MBT ; 19669

Page generated in 0.0024 seconds