The Semantic Web enables people and computers to interact and exchange
information. Based on Semantic Web technologies, different machine learning applications have been designed. Particularly to emphasize is the possibility to create complex metadata descriptions for any problem domain, based on pre-defined ontologies. In this paper we evaluate the use of a semantic similarity measure based on pre-defined ontologies as an input for a classification analysis. A link prediction between actors of a social network is performed, which could serve as a recommendation system. We measure the prediction performance based on an ontology-based metadata modeling as well as a feature vector modeling. The findings demonstrate that the prediction accuracy based on ontology-based metadata is comparable to traditional approaches and shows that data mining using ontology-based metadata can be considered as a very promising approach.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:11354 |
Date | January 2011 |
Creators | Opuszko, Marek |
Contributors | Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Source | Forschungsberichte des Instituts für Wirtschaftsinformatik der Universität Leipzig Heft 8/15. Interuniversitäres Doktorandenseminar Wirtschaftsinformatik der Universitäten Chemnitz, Dresden, Freiberg, Halle-Wittenberg, Jena und Leipzig |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds