Living cells are controlled by proteins and genes that interact through complex molecular pathways to achieve a specific function. Therefore, determination of protein-protein interaction is fundamental for the understanding of the cell’s lifecycle and functions. The function of a protein is also largely determined by its interactions with other proteins. The amount of protein-protein interaction data available has multiplied by the emergence of large-scale technologies for detecting them, but the drawback of such measures is the relatively high amount of noise present in the data. It is time consuming to experimentally determine protein-protein interactions and therefore the aim of this project is to create a computational method that predicts interactions with high sensitivity and specificity. Semantic similarity measures were applied across the Gene Ontology terms assigned to proteins in S. cerevisiae to predict protein-protein interactions. Three semantic similarity measures were tested to see which one performs best in predicting such interactions. Based on the results, a method that predicts function of proteins in connection with connectivity was devised. The results show that semantic similarity is a useful measure for predicting protein-protein interactions.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:his-971 |
Date | January 2005 |
Creators | Helgadóttir, Hanna Sigrún |
Publisher | Högskolan i Skövde, Institutionen för kommunikation och information, Skövde : Institutionen för kommunikation och information |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/postscript, application/pdf |
Rights | info:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds