Return to search

Interpretability of a Deep Learning Model for Semantic Segmentation : Example of Remote Sensing Application

Understanding a black-box model is a major problem in domains that relies on model predictions in critical tasks. If solved, can help to evaluate the trustworthiness of a model. This thesis proposes a user-centric approach to black-box interpretability. It addresses the problem in semantic segmentation setting with an example of humanitarian remote sensing application for building detection. The question that drives this work was, Can existing methods for explaining black-box classifiers be used for a deep learning semantic segmentation model? We approached this problem with exploratory qualitative research involving a case study and human evaluation. The study showed that it is possible to explain a segmentation model with adapted methods for classifiers but not without a cost. The specificity of the model is likely to be lost in the process. The sole process could include introducing artificial classes or fragmenting image into super-pixels. Other approaches are necessary to mitigate identified drawback. The main contribution of this work is an interactive visualisation approach for exploring learned latent space via a deep segmenter, named U-Net, evaluated with a user study involving 45 respondents. We developed an artefact (accessible online) to evaluate the approach with the survey. It presents an example of this approach with a real-world satellite image dataset. In the evaluation study, the majority of users had a computer science background (80%), including a large percentage of users with machine learning specialisation (44.4% of all respondents). The model distinguishes rurality vs urbanization (58% of users). External quantitative comparison of building densities of each city concerning the location in the latent space confirmed the later. The representation of the model was found faithful to the underlying model (62% of users). Preliminary results show the utility of the pursued approach in the application domain. Limited possibility to present complex model visually requires further investigation. / Att förstå en svartboxmodell är ett stort problem inom domäner som förlitar sig på modellprognoser i kritiska uppgifter. Om det löses, kan det hjälpa till att utvärdera en modells pålitlighet. Den här avhandlingen föreslår en användarcentrisk strategi för svartboxtolkbarhet. Den tar upp problemet i semantisk segmentering med ett exempel på humanitär fjärranalysapplikation för byggnadsdetektering. Frågan som driver detta arbete var: Kan befintliga metoder för att förklara svartruta klassificerare användas för en djup semantisk segmenteringsmodell? Vi närmade oss detta problem med utforskande kvalitativ forskning som involverade en fallstudie och mänsklig utvärdering. Studien visade att det är möjligt att förklara en segmenteringsmodell med anpassade metoder för klassificerare men inte utan kostnad. Modellens specificitet kommer sannolikt att gå förlorad i processen. Den enda processen kan inkludera införande av konstgjorda klasser eller fragmentering av bild i superpixlar. Andra tillvägagångssätt är nödvändiga för att mildra identifierad nackdel. Huvudbidraget i detta arbete är en interaktiv visualiseringsmetod för att utforska lärt latent utrymme via en djup segmenter, benämnd U-Net, utvärderad med en användarstudie med 45 svarande. Vi utvecklade en artefakt (tillgänglig online) för att utvärdera tillvägagångssättet med undersökningen. Den presenterar ett exempel på denna metod med en verklig satellitbilddatasats. I utvärderingsstudien hade majoriteten av användarna en datavetenskaplig bakgrund (80%), inklusive en stor andel användare med specialisering av maskininlärning (44,4 % av alla svarande). Modellen skiljer ruralitet och urbanisering (58 % av användarna). Den externa kvantitativa jämförelsen av byggnadstätheten i varje stad angående platsen i det latenta utrymmet bekräftade det senare. Representationen av modellen visade sig vara trogen mot den underliggande modellen (62% av användarna). Preliminära resultat visar användbarheten av den eftersträvade metoden inom applikationsdomänen. Begränsad möjlighet att presentera komplexa modeller visuellt kräver ytterligare utredning.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-269561
Date January 2019
CreatorsJanik, Adrianna
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2019:851

Page generated in 0.0022 seconds