Le travail que nous présentons dans ce mémoire apporte sa contribution au domaine dela surveillance et de la supervision en ligne des systèmes à événements discrets complexes.Il se place dans un contexte perturbé par l'occurrence d'aléas de fonctionnement d'une partieopérative au sein duquel nous visons à mettre à disposition des équipes de maintenance desoutils pour les aider à localiser rapidement les équipements à l'origine probable de défautsproduits : localiser mieux pour maintenir mieux et donc minimiser encore davantage les tempsde dérives équipements. Si les équipements de production étaient en mesure de détecterde telles dérives, le problème pourrait être considéré comme simple, cependant, la présenced'équipements de métrologie montre le contraire. Aussi, partant du constat que les équipementsde production ne peuvent être dotés d'un système de captage couvrant de manière exhaustivel'ensemble des paramètres à observer, que la fiabilité des capteurs est variable dans le temps,que les contextes de production sont particulièrement stressants, nous avons proposé ici dedévelopper une approche probabiliste basée sur un raisonnement Bayésien permettant d'estimeren temps réel la confiance qui peut être accordée aux opérations réalisées par les équipementsde production.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00910079 |
Date | 19 December 2012 |
Creators | Duong, Quoc bao |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds