In dieser Arbeit werden Algorithmen zur Lösung von linearen semidefiniten Programmen beschrieben. Unter einer geeigneten Regularitätsvoraussetzung ist ein semidefinites Programm äquivalent zu seinen Optimalitätsbedingungen. Die Optimalitätsbedingungen bzw. die Zentralen-Pfad-Bedingungen überführen wir zunächst durch matrixwertige NCP-Funktionen in ein nichtlineares Gleichungssystem. Dieses nichtlineare und teilweise nicht differenzierbare Gleichungssystem lösen wir dann mit einem Newton-ähnlichen Verfahren. Durch die Umformulierung in ein nichtlineares Gleichungssystem muss während der Iteration nicht mehr explizit die positive (Semi-)Definitheit der beteiligten Matrizen beachtet werden. Weiter wird gezeigt, dass dieser Ansatz im Gegensatz zu Inneren-Punkte-Methoden sofort symmetrische Suchrichtungen erzeugt. Um globale Konvergenz zu erhalten, werden verschiedene Globalisierungsstrategien (Schrittweitenbestimmung, Trust-Region-Ansatz) untersucht. Für das betrachtete Prädiktor-Korrektor-Verfahren und das Trust-Region-Verfahren wird lokal superlineare Konvergenz unter strikter Komplementarität und Nichtdegeneriertheit gezeigt. Die theoretische Untersuchung eines nichtglatten Newton-Verfahrens liefert ein lokal quadratisches Konvergenzverhalten ohne strikte Komplementarität, wenn die Nichtdegeneriertheitsvoraussetzung geeignet modifiziert wird. / In this thesis we consider algorithms to compute a solution of linear semidefinite programs. Under a suitable regularity condition a semidefinite program is equivalent to its optimality conditions. These optimality conditions, or central-path-conditions, are reformulated as a nonlinear system of equations via matrix-valued NCP-functions. This nonlinear and partly nonsmooth system of equations is solved with a Newton-type method. Because of the reformulation as a nonlinear system of equations, we do not need the iterates to be positive (semi-)definite. Moreover, this reformulation automatically computes symmetric search directions, in contrast to interior point methods. To obtain global convergence, different globalizations (line search, trust-region) are considered. For the predictor-corrector method and the trust-region-method global and local superlinear convergence is shown under strikt complementarity and nondegeneracy. The theoretical investigation of a nonsmooth version of Newton's methods yields locally quadratic convergence without strict complementarity if the nondegeneracy conditon is modified in a suitable way.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:702 |
Date | January 2003 |
Creators | Nagel, Christian |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds