Return to search

Three-dimensional individual and joint inversion of direct current resistivity and electromagnetic data

The objective of our studies is the combination of electromagnetic and direct current (DC) resistivity methods in a joint inversion approach to improve the reconstruction of a given conductivity distribution. We utilize the distinct sensitivity patterns of different methods to enhance the overall resolution power and ensure a more reliable imaging result.

In order to simplify the work with more than one electromagnetic method and establish a flexible and state-of-the-art software basis, we developed new DC resistivity and electromagnetic forward modeling and inversion codes based on finite elements of second order on unstructured grids. The forward operators are verified using analytical solutions and convergence studies before we apply a regularized Gauss-Newton scheme and successfully invert synthetic data sets. Finally, we link both codes with each other in a joint inversion.

In contrast to most widely used joint inversion strategies, where different data sets are combined in a single least-squares problem resulting in a large system of equations, we introduce a sequential approach that cycles through the different methods iteratively. This way, we avoid several difficulties such as the determination of the full set of regularization parameters or a weighting of the distinct data sets. The sequential approach makes use of a smoothness regularization operator which penalizes the deviation of the model parameters from a given reference model. In our sequential strategy, we use the result of the preceding individual inversion scheme as reference model for the following one. We successfully apply this approach to synthetic data sets and show that the combination of at least two methods yields a significantly improved parameter model compared to the individual inversion results. / Ziel der vorliegenden Arbeit ist die gemeinsame Inversion (\"joint inversion\") elektromagnetischer und geoelektrischer Daten zur Verbesserung des rekonstruierten Leitfähigkeitsmodells. Dabei nutzen wir die verschiedenartigen Sensitivitäten der Methoden aus, um die Auflösung zu erhöhen und ein zuverlässigeres Ergebnis zu erhalten.

Um die Arbeit mit mehr als einer Methode zu vereinfachen und eine flexible Softwarebasis auf dem neuesten Stand der Forschung zu etablieren, wurden zwei Codes zur Modellierung und Inversion geoelektrischer als auch elektromagnetischer Daten neu entwickelt, die mit finiten Elementen zweiter Ordnung auf unstrukturierten Gittern arbeiten. Die Vorwärtsoperatoren werden mithilfe analytischer Lösungen und Konvergenzstudien verifiziert, bevor wir ein regularisiertes Gauß-Newton-Verfahren zur Inversion synthetischer Datensätze anwenden.

Im Gegensatz zur meistgenutzten \"joint inversion\"-Strategie, bei der verschiedene Daten in einem einzigen Minimierungsproblem kombiniert werden, was in einem großen Gleichungssystem resultiert, stellen wir schließlich einen sequentiellen Ansatz vor, der zyklisch durch die einzelnen Methoden iteriert. So vermeiden wir u.a. eine komplizierte Wichtung der verschiedenen Daten und die Bestimmung aller Regularisierungsparameter in einem Schritt. Der sequentielle Ansatz wird über die Anwendung einer Glättungsregularisierung umgesetzt, bei der die Abweichung der Modellparameter zu einem gegebenen Referenzmodell bestraft wird. Wir nutzen das Ergebnis der vorangegangenen Einzelinversion als Referenzmodell für die folgende Inversion. Der Ansatz wird erfolgreich auf synthetische Datensätze angewendet und wir zeigen, dass die Kombination von mehreren Methoden eine erhebliche Verbesserung des
Inversionsergebnisses im Vergleich zu den Einzelinversionen liefert.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:105-qucosa-220995
Date06 April 2017
CreatorsWeißflog, Julia
ContributorsTU Bergakademie Freiberg, Geowissenschaften, Geotechnik und Bergbau, Prof. Dr. Klaus Spitzer, Prof. Dr. Klaus Spitzer, Prof. Dr. Oliver G. Ernst, Prof. Dr. Yuguo Li
PublisherTechnische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola"
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0029 seconds