Cette thèse porte sur l'approximation numérique des équations de Saint-Venant et de quelques problèmes qui leur sont reliés. Dans la première partie, nous analysons les propriétés mathématiques et les applications des schémas numériques sur grilles décalées. La robustesse de ces schémas est prouvée sur des applications telles que les équations de Saint-Venant dans un domaine en rotation, en vue des écoulements géostrophiques, ainsi que l'extension de ces équations au cas visqueux. Dans la seconde partie, nous présentons des modèles basés sur les équations de Saint-Venant. Nous commençons par étudier le couplage avec l'équation d'Exner, qui porte sur le transport des sédiments. Nous observons des propriétés de convergence numérique vers la solution exacte dans un cas de solution analytique, et nous constatons un bon accord avec des données expérimentales dans le cas de la rupture de barrage avec fond érodable. Nous continuons par l'étude d'un schéma numérique, basé sur une méthode de volumes finis colocalisés (HLLC) pour l'approximation du modèle de Richard-Gavrilyuk. Ce modèle étend les équations de Saint-Venant au cas des écoulements avec cisaillement. Des tests numériques montrent la validité du schéma / This thesis is devoted to the numerical approximation of the shallow water equations and of some related models. In the first part, we analyze the mathematical properties and the applications of the staggered grid scheme. The robustness of this scheme is validated on various applications such as the rotating shallow water equations for geostrophic flows model and viscous shallow water equations. In the second part, we consider some related models. Firstly focusing on the coupling between the Exner equation and the shallow water equations, modelling bedload sediment transport, we observe in a particular case the numerical convergence of the scheme to the exact solution, as well as a good agreement with the experimental data in the dam-break with erodible bottom test. Secondly, we present a numerical scheme based on the finite volume collocated scheme (HLLC) in order to approximate the Richard-Gavrilyuk model. This model is an extension of the shallow water model, fit for modelling the shear shallow water flows. Some numerical tests provide a validation of the scheme
Identifer | oai:union.ndltd.org:theses.fr/2015PEST1010 |
Date | 29 January 2015 |
Creators | Gunawan, Harry Putu |
Contributors | Paris Est, Institut teknologi Bandung, Eymard, Robert |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds