Spelling suggestions: "subject:"staggered grids"" "subject:"sataggered grids""
1 |
A high order method for simulation of fluid flow in complex geometriesStålberg, Erik January 2005 (has links)
<p>A numerical high order difference method is developed for solution of the incompressible Navier-Stokes equations. The solution is determined on a staggered curvilinear grid in two dimensions and by a Fourier expansion in the third dimension. The description in curvilinear body-fitted coordinates is obtained by an orthogonal mapping of the equations to a rectangular grid where space derivatives are determined by compact fourth order approximations. The time derivative is discretized with a second order backward difference method in a semi-implicit scheme, where the nonlinear terms are linearly extrapolated with second order accuracy.</p><p>An approximate block factorization technique is used in an iterative scheme to solve the large linear system resulting from the discretization in each time step. The solver algorithm consists of a combination of outer and inner iterations. An outer iteration step involves the solution of two sub-systems, one for prediction of the velocities and one for solution of the pressure. No boundary conditions for the intermediate variables in the splitting are needed and second order time accurate pressure solutions can be obtained.</p><p>The method has experimentally been validated in earlier studies. Here it is validated for flow past a circular cylinder as an example of a physical test case and the fourth order method is shown to be efficient in terms of grid resolution. The method is applied to external flow past a parabolic body and internal flow in an asymmetric diffuser in order to investigate the performance in two different curvilinear geometries and to give directions for future development of the method. It is concluded that the novel formulation of boundary conditions need further investigation.</p><p>A new iterative solution method for prediction of velocities allows for larger time steps due to less restrictive convergence constraints.</p>
|
2 |
A high order method for simulation of fluid flow in complex geometriesStålberg, Erik January 2005 (has links)
A numerical high order difference method is developed for solution of the incompressible Navier-Stokes equations. The solution is determined on a staggered curvilinear grid in two dimensions and by a Fourier expansion in the third dimension. The description in curvilinear body-fitted coordinates is obtained by an orthogonal mapping of the equations to a rectangular grid where space derivatives are determined by compact fourth order approximations. The time derivative is discretized with a second order backward difference method in a semi-implicit scheme, where the nonlinear terms are linearly extrapolated with second order accuracy. An approximate block factorization technique is used in an iterative scheme to solve the large linear system resulting from the discretization in each time step. The solver algorithm consists of a combination of outer and inner iterations. An outer iteration step involves the solution of two sub-systems, one for prediction of the velocities and one for solution of the pressure. No boundary conditions for the intermediate variables in the splitting are needed and second order time accurate pressure solutions can be obtained. The method has experimentally been validated in earlier studies. Here it is validated for flow past a circular cylinder as an example of a physical test case and the fourth order method is shown to be efficient in terms of grid resolution. The method is applied to external flow past a parabolic body and internal flow in an asymmetric diffuser in order to investigate the performance in two different curvilinear geometries and to give directions for future development of the method. It is concluded that the novel formulation of boundary conditions need further investigation. A new iterative solution method for prediction of velocities allows for larger time steps due to less restrictive convergence constraints. / QC 20101221
|
3 |
Análise de discretizações e interpolações em malhas icosaédricas e aplicações em modelos de transporte semi-lagrangianos / Analysis of discretizations and interpolations on icosahedral grids and applications to semi-Lagrangian transport modelsPeixoto, Pedro da Silva 12 June 2013 (has links)
A esfera é utilizada como domínio computacional na modelagem de diversos fenômenos físicos, como em previsão numérica do tempo. Sua discretização pode ser feita de diversas formas, sendo comum o uso de malha regulares em latitude/longitude. Recentemente, também para melhor uso de computação paralela, há uma tendência ao uso de malhas mais isotrópicas, dentre as quais a icosaédrica. Apesar de já existirem modelos atmosféricos que usam malhas icosaédricas, não há consenso sobre as metodologias mais adequadas a esse tipo de malha. Nos propusemos, portanto, a estudar em detalhe diversos fatores envolvidos no desenvolvimento de modelos atmosféricos globais usando malhas geodésicas icosaédricas. A discretização usual por volumes finitos para divergente de um campo vetorial utiliza como base o Teorema da Divergência e a regra do ponto médio nas arestas das células computacionais. A distribuição do erro obtida com esse método apresenta uma forte relação com características geométricas da malha. Definimos o conceito geométrico de alinhamento de células computacionais e desenvolvemos uma teoria que serve de base para explicar interferências de malha na discretização usual do divergente. Destacamos os impactos de certas relações de alinhamento das células na ordem da discretização do método. A teoria desenvolvida se aplica a qualquer malha geodésica e também pode ser usada para os operadores rotacional e laplaciano. Investigamos diversos métodos de interpolação na esfera adequados a malhas icosaédricas, e abordamos o problema de interpolação e reconstrução vetorial na esfera em malhas deslocadas. Usamos métodos alternativos de reconstrução vetorial aos usados na literatura, em particular, desenvolvemos um método híbrido de baixo custo e boa precisão. Por fim, utilizamos as técnicas de discretização, interpolação e reconstrução vetorial analisadas em um método semi-lagrangiano para o transporte na esfera em malhas geodésicas icosaédricas. Realizamos experimentos computacionais de transporte, incluindo testes de deformações na distribuição do campo transportado, que mostraram a adequação da metodologia para uso em modelos atmosféricos globais. A plataforma computacional desenvolvida nesta tese, incluindo geração de malhas, interpolações, reconstruções vetoriais e um modelo de transporte, fornece uma base para o futuro desenvolvimento de um modelo atmosférico global em malhas icosaédricas. / Spherical domains are used to model many physical phenomena, as, for instance, global numerical weather prediction. The sphere can be discretized in several ways, as for example a regular latitude-longitude grid. Recently, also motivated by a better use of parallel computers, more isotropic grids have been adopted in atmospheric global circulation models. Among those, the icosahedral grids are promising. Which kind of discretization methods and interpolation schemes are the best to use on those grids are still a research subject. Discretization of the sphere may be done in many ways and, recently, to make better use of computational resources, researchers are adopting more isotropic grids, such as the icosahedral one. In this thesis, we investigate in detail the numerical methodology to be used in atmospheric models on icosahedral grids. The usual finite volume method of discretization of the divergence of a vector field is based on the divergence theorem and makes use of the midpoint rule for integration on the edges of computational cells. The error distribution obtained with this method usually presents a strong correlation with some characteristics of the icosahedral grid. We introduced the concept of cell alignment and developed a theory which explains the grid imprinting patterns observed with the usual divergence discretization. We show how grid alignment impacts in the order of the divergence discretization. The theory developed applies to any geodesic grid and can also be used for other operators such as curl and Laplacian. Several interpolation schemes suitable for icosahedral grids were analysed, including the vector interpolation and reconstruction problem on staggered grids. We considered alternative vector reconstruction methods, in particular, we developed a hybrid low cost and good precision method. Finally, employing the discretizations and interpolations previously analysed, we developed a semi-Lagrangian transport method for geodesic icosahedral grids. Several tests were carried out, including deformational test cases, which demonstrated that the methodology is suitable to use in global atmospheric models. The computational platform developed in this thesis, including mesh generation, interpolation, vector reconstruction and the transport model, provides a basis for future development of global atmospheric models on icosahedral grids.
|
4 |
Discrétisation et commande frontière de systèmes vibro-acoustiques, une approche hamiltonienne à ports / Discretization and boundary control of vibroacoustic systems, a port-Hamiltonian approachTrenchant, Vincent 27 November 2017 (has links)
Cette thèse répond à une problématique de commande frontière d’une conduite acoustique dont l’actionnement est assuré par un réseau d’actionneurs/capteurs co-localisés constituant une peau active. Pour faire face au caractère intrinsèquement multiphysique de ce problème vibro-acoustique, nous avons choisi dans cette thèse d’employer une approche hamiltonienne à ports, approche structurée basée sur la représentation des échanges entre différents domaines énergétiques au sein d’un système et entre différents systèmes. Nous avons proposé une modélisation hamiltonienne à ports de l’équation d’onde interconnectée à la frontière au système d’actionnement distribué, correspondant à une formulation 2D du problème physique. Nous avons développé une méthode de discrétisation spatiale basée sur l’utilisation de différences finies sur plusieurs grilles en quinconce qui préserve la structure hamiltonienne à ports de l’équation d’onde. Cette méthode permet en outre d’interconnecter facilement le système discrétisé avec d’autres sous-systèmes, dans le but de mettre en place un actionnement par exemple. Son principal avantage sur d’autres méthodes préservatives de structure réside dans sa simplicité de mise en œuvre qui découle de l’utilisation de différences finies. Concernant la commande du système vibro-acoustique, nous avons proposé une méthode de synthèse de loi de commande distribuée pour les systèmes régis par deux lois de conservation en 1D. L’originalité de cette méthode réside en le fait qu’elle repose sur le calcul d’invariants structuraux (fonctions de Casimir) exploités afin de modifier la structure du système en boucle fermée. Les conditions d’application sur un système 2D sont étudiées et des résultats numériques valident les lois de commande synthétisées. / This thesis deals with the boundary control of an acoustic by a network of co-localised sensors/actuators which constitutes a smart skin. In order to cope with this multiphysical problem, we chose to place our study in the framework of port-Hamiltonian systems, a structured approach based on the representation of energy exchanges between different energy domains between different systems of subsystems. We proposed a port-Hamiltonian model of the wave equation interconnected through its boundary to the distributed actuation system, which corresponds to a 2D formulation of the physical problem. We developed a spatial discretization method based on the use of finite differences on several staggered grids that preserve the port-Hamiltonian structure of the wave equation. This method also permits to easily interconnect the discretized system with other subsystems, which is convenient for instance for control purposes. Its main advantage over other structure preserving methods is its simplicity of implementation which stems from the use of finite differences. In order to control the vibro-acoustic system, we proposed a control law synthesis method for systems governed by two conservation laws in 1D. The originality of this method lies in the fact that it relies on the computation of structural invariants (Casimir functions) exploited in order to modify the structure of the system in closed loop. The conditions of application of these laws on a 2D system are studied and numerical results validate the synthesized control laws.
|
5 |
Análise de discretizações e interpolações em malhas icosaédricas e aplicações em modelos de transporte semi-lagrangianos / Analysis of discretizations and interpolations on icosahedral grids and applications to semi-Lagrangian transport modelsPedro da Silva Peixoto 12 June 2013 (has links)
A esfera é utilizada como domínio computacional na modelagem de diversos fenômenos físicos, como em previsão numérica do tempo. Sua discretização pode ser feita de diversas formas, sendo comum o uso de malha regulares em latitude/longitude. Recentemente, também para melhor uso de computação paralela, há uma tendência ao uso de malhas mais isotrópicas, dentre as quais a icosaédrica. Apesar de já existirem modelos atmosféricos que usam malhas icosaédricas, não há consenso sobre as metodologias mais adequadas a esse tipo de malha. Nos propusemos, portanto, a estudar em detalhe diversos fatores envolvidos no desenvolvimento de modelos atmosféricos globais usando malhas geodésicas icosaédricas. A discretização usual por volumes finitos para divergente de um campo vetorial utiliza como base o Teorema da Divergência e a regra do ponto médio nas arestas das células computacionais. A distribuição do erro obtida com esse método apresenta uma forte relação com características geométricas da malha. Definimos o conceito geométrico de alinhamento de células computacionais e desenvolvemos uma teoria que serve de base para explicar interferências de malha na discretização usual do divergente. Destacamos os impactos de certas relações de alinhamento das células na ordem da discretização do método. A teoria desenvolvida se aplica a qualquer malha geodésica e também pode ser usada para os operadores rotacional e laplaciano. Investigamos diversos métodos de interpolação na esfera adequados a malhas icosaédricas, e abordamos o problema de interpolação e reconstrução vetorial na esfera em malhas deslocadas. Usamos métodos alternativos de reconstrução vetorial aos usados na literatura, em particular, desenvolvemos um método híbrido de baixo custo e boa precisão. Por fim, utilizamos as técnicas de discretização, interpolação e reconstrução vetorial analisadas em um método semi-lagrangiano para o transporte na esfera em malhas geodésicas icosaédricas. Realizamos experimentos computacionais de transporte, incluindo testes de deformações na distribuição do campo transportado, que mostraram a adequação da metodologia para uso em modelos atmosféricos globais. A plataforma computacional desenvolvida nesta tese, incluindo geração de malhas, interpolações, reconstruções vetoriais e um modelo de transporte, fornece uma base para o futuro desenvolvimento de um modelo atmosférico global em malhas icosaédricas. / Spherical domains are used to model many physical phenomena, as, for instance, global numerical weather prediction. The sphere can be discretized in several ways, as for example a regular latitude-longitude grid. Recently, also motivated by a better use of parallel computers, more isotropic grids have been adopted in atmospheric global circulation models. Among those, the icosahedral grids are promising. Which kind of discretization methods and interpolation schemes are the best to use on those grids are still a research subject. Discretization of the sphere may be done in many ways and, recently, to make better use of computational resources, researchers are adopting more isotropic grids, such as the icosahedral one. In this thesis, we investigate in detail the numerical methodology to be used in atmospheric models on icosahedral grids. The usual finite volume method of discretization of the divergence of a vector field is based on the divergence theorem and makes use of the midpoint rule for integration on the edges of computational cells. The error distribution obtained with this method usually presents a strong correlation with some characteristics of the icosahedral grid. We introduced the concept of cell alignment and developed a theory which explains the grid imprinting patterns observed with the usual divergence discretization. We show how grid alignment impacts in the order of the divergence discretization. The theory developed applies to any geodesic grid and can also be used for other operators such as curl and Laplacian. Several interpolation schemes suitable for icosahedral grids were analysed, including the vector interpolation and reconstruction problem on staggered grids. We considered alternative vector reconstruction methods, in particular, we developed a hybrid low cost and good precision method. Finally, employing the discretizations and interpolations previously analysed, we developed a semi-Lagrangian transport method for geodesic icosahedral grids. Several tests were carried out, including deformational test cases, which demonstrated that the methodology is suitable to use in global atmospheric models. The computational platform developed in this thesis, including mesh generation, interpolation, vector reconstruction and the transport model, provides a basis for future development of global atmospheric models on icosahedral grids.
|
6 |
Numerical simulation of shallow water equations and related models / Méthodes numériques pour les équations de Saint-Venant et des modèles associésGunawan, Harry Putu 29 January 2015 (has links)
Cette thèse porte sur l'approximation numérique des équations de Saint-Venant et de quelques problèmes qui leur sont reliés. Dans la première partie, nous analysons les propriétés mathématiques et les applications des schémas numériques sur grilles décalées. La robustesse de ces schémas est prouvée sur des applications telles que les équations de Saint-Venant dans un domaine en rotation, en vue des écoulements géostrophiques, ainsi que l'extension de ces équations au cas visqueux. Dans la seconde partie, nous présentons des modèles basés sur les équations de Saint-Venant. Nous commençons par étudier le couplage avec l'équation d'Exner, qui porte sur le transport des sédiments. Nous observons des propriétés de convergence numérique vers la solution exacte dans un cas de solution analytique, et nous constatons un bon accord avec des données expérimentales dans le cas de la rupture de barrage avec fond érodable. Nous continuons par l'étude d'un schéma numérique, basé sur une méthode de volumes finis colocalisés (HLLC) pour l'approximation du modèle de Richard-Gavrilyuk. Ce modèle étend les équations de Saint-Venant au cas des écoulements avec cisaillement. Des tests numériques montrent la validité du schéma / This thesis is devoted to the numerical approximation of the shallow water equations and of some related models. In the first part, we analyze the mathematical properties and the applications of the staggered grid scheme. The robustness of this scheme is validated on various applications such as the rotating shallow water equations for geostrophic flows model and viscous shallow water equations. In the second part, we consider some related models. Firstly focusing on the coupling between the Exner equation and the shallow water equations, modelling bedload sediment transport, we observe in a particular case the numerical convergence of the scheme to the exact solution, as well as a good agreement with the experimental data in the dam-break with erodible bottom test. Secondly, we present a numerical scheme based on the finite volume collocated scheme (HLLC) in order to approximate the Richard-Gavrilyuk model. This model is an extension of the shallow water model, fit for modelling the shear shallow water flows. Some numerical tests provide a validation of the scheme
|
Page generated in 0.0565 seconds