Nos travaux concernent l’étude d’une extension d’un problème d’ordonnancement bien connu sous l’appellation job shop. Nous appelons cette extension le General Flexible Job Shop Scheduling Problem (GFJSSP). Celui-ci se rencontre dans différents types d’ateliers ayant comme caractéristique commune d’être soumis à des contraintes dues à des ressources de transport. Le GFJSSP se caractérise par l’intégration de machines et robots flexibles. Le terme General induit par ailleurs la présence de robots dont la capacité est supposée unitaire dans notre étude, des temps opératoires bornés, et la possibilité de prise en compte d’emplacements de stockage spécifiques. Après avoir défini l’atelier et le problème correspondant à cette extension, nous avons proposé deux modélisations du GFJSSP ainsi défini : une première modélisation mathématique linéaire, et une modélisation graphique, qui correspond à une généralisation du graphe disjonctif couramment utilisé pour les problèmes de job shop. Nous avons ensuite abordé la résolution suivant deux étapes : tout d’abord en nous focalisant sur l’aspect séquencement des tâches de traitement et de transport, pour lequel nous avons élaboré deux méthodes heuristiques (de type Tabou et basée sur une procédure de shifting bottleneck améliorée) ; puis en intégrant dans un deuxième temps la problématique de l’affectation induite par la flexibilité de certaines ressources. Pour cette dernière étape, nous avons combiné les méthodes précédentes avec un algorithme génétique. L’algorithme hybride obtenu nous permet de résoudre des instances de la littérature correspondant à divers cas spécifiques, avec des résultats assez proches des meilleures méthodes dédiées. A termes, il pourrait être intégré dans un système d'aide à la décision général qui s’affranchirait de la phase d’identification préalable du type de job shop considéré, et serait adapté à la résolution de nombreux cas (avec ou sans problème d'affectation, temps de traitement fixes ou bornés, avec ou sans stockage, etc..). / Our work focuses on an extension of the well known job shop scheduling problem. We call this extension the General Flexible Job Shop Scheduling Problem (GFJSSP). It occurs in various kinds of workshops which are particularly constrained by one or several transportation resources (called robots). GFJSSP is characterized by the flexibility of both machines and robots. In the studied problem, the term General involves unitary capacity transportation resources, bounded processing times, and possible input/output buffers for machines. After defining the workshop and the corresponding problem, we proposed two kinds of model for the GFJSSP: a mathematical model, and a graphical one. This last one is a generalization of the disjunctive graph commonly used for job shop problems. We then addressed the resolution in two steps: firstly, by focusing on the sequencing of processing and transportation tasks. For this purpose we have developed two heuristics (Tabu search and an improved shifting bottleneck procedure). Secondly, we have considered the assignment problem involved by the flexibility of some resources. For this last step, we combined the above methods with a genetic algorithm. This hybrid algorithm allowed us to solve various specific cases of instances in the literature, with performance rather close to the best dedicated methods. In the future, it could be integrated within a general decision support system which could emancipate from the initial identification phase of the considered type of job shop, and which would be suitable for solving many cases (with or without assignment problem, fixed or bounded processing times, with or without storage, and so on).
Identifer | oai:union.ndltd.org:theses.fr/2012BELF0183 |
Date | 25 July 2012 |
Creators | Zhang, Qiao |
Contributors | Belfort-Montbéliard, Manier, Marie-Ange, Manier, Hervé |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds