Synthetic aperture radar imaging is an effective tool for imaging the sea surface because of its response to changes in sea surface roughness. This allows for the remote sensing of features on the sea surface, which modulate se surface roughness. In this work, 18 synthetic aperture radar images were collected from the TerraSAR-X and RADARSAT-2 satellites in the Port Everglades, Florida area. In-situ measurements were collected in conjunction with the satellite images in order to provide more information on the features visible in the imagery, and aid in identification of the origin of the features. Information on ships in the area of the satellite image footprints was collected using an automatic information system. Weather conditions were recorded by a meteorological station and a National Oceanic and Atmospheric Administration weather radar station. Waves and currents in the observational area were recorded with acoustic Doppler current profilers and wave gauges. Sonar systems and conductivity, depth, and salinity profilers were used to identify stratification in the water column. Surfactant release experiments were also conducted to explore the affects of surface active materials. Results of the experiment show the manifestation of atmospheric effects, oceanic fronts and eddies, wind shadowing, natural and artificial slicks, and ships and ship wakes on the synthetic aperture radar imagery. Atmospheric conditions were found to play a significant role in the visibility of features on the sea surface, and sometimes masked the appearance of features on the ocean surface. Overall the most reliable feature capable of being imaged on the sea surface by the synthetic aperture radar satellites was the signatures of ships and their wakes.
Identifer | oai:union.ndltd.org:nova.edu/oai:nsuworks.nova.edu:occ_stuetd-1196 |
Date | 22 November 2011 |
Creators | Maingot, Christopher |
Publisher | NSUWorks |
Source Sets | Nova Southeastern University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0014 seconds