Low pressure chemical vapor deposition (LPCVD) is one of the important technics in the semiconductor process recently. The computer simulation is the best efficient method on the process research. This research use numerical method to study the performance of showerhead parameters, and to confer the flow field distribution and deposition rate under different design parameters in LPCVD of silicon (Si).
In this simulation, the CVD reactor modelings are constructed and discredited by using implicit finite volume method. The grids are arranged in a staggered manner for the discretization of the governing equations. Then the SIMPLE-type algorithm is used to solve all of the discretized algebra equations. The variable parameters are: (1) the inlet velocity, (2) the holes diameter of showerhead, (3) the showerhead size.
The results show that using the showerhead can adjust the flow filed distribution and it is better for film thickness uniformity. The holes diameter and distribution density have relations with film uniformity. We also proved that the growth rate increase with the inlet velocity under the some conditions.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0701103-133356 |
Date | 01 July 2003 |
Creators | Lin, Yi-Cheng |
Contributors | Jen-Jyh Hwang, Charlie Chang, Ru Yang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0701103-133356 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0017 seconds