Return to search

Side-Channel Analysis of AES Based on Deep Learning

Side-channel attacks avoid complex analysis of cryptographic algorithms, instead they use side-channel signals captured from a software or a hardware implementation of the algorithm to recover its secret key. Recently, deep learning models, especially Convolutional Neural Networks (CNN), have been shown successful in assisting side-channel analysis. The attacker first trains a CNN model on a large set of power traces captured from a device with a known key. The trained model is then used to recover the unknown key from a few power traces captured from a victim device. However, previous work had three important limitations: (1) little attention is paid to the effects of training and testing on traces captured from different devices; (2) the effect of different power models on the attack’s efficiency has not been thoroughly evaluated; (3) it is believed that, in order to recover all bytes of a key, the CNN model must be trained as many times as the number of bytes in the key.This thesis aims to address these limitations. First, we show that it is easy to overestimate the attack’s efficiency if the CNN model is trained and tested on the same device. Second, we evaluate the effect of two common power models, identity and Hamming weight, on CNN-based side-channel attack’s efficiency. The results show that the identity power model is more effective under the same training conditions. Finally, we show that it is possible to recover all key bytes using the CNN model trained only once. / Sidokanalattacker undviker komplex analys av kryptografiska algoritmer, utan använder sig av sidokanalssignaler som tagits från en mjukvara eller en hårdvaruimplementering av algoritmen för att återställa sin hemliga nyckel. Nyligen har djupa inlärningsmodeller, särskilt konvolutionella neurala nätverk (CNN), visats framgångsrika för att bistå sidokanalanalys. Anfallaren tränar först en CNN-modell på en stor uppsättning strömspår som tagits från en enhet med en känd nyckel. Den utbildade modellen används sedan för att återställa den okända nyckeln från några kraftspår som fångats från en offeranordning. Tidigare arbete hade dock tre viktiga begränsningar: (1) Liten uppmärksamhet ägnas åt effekterna av träning och testning på spår som fångats från olika enheter; (2) Effekten av olika kraftmodeller på attackerens effektivitet har inte utvärderats noggrant. (3) man tror att CNN-modellen måste utbildas så många gånger som antalet byte i nyckeln för att återställa alla bitgrupper av en nyckel.Denna avhandling syftar till att hantera dessa begränsningar. Först visar vi att det är lätt att överskatta attackens effektivitet om CNN-modellen är utbildad och testad på samma enhet. För det andra utvärderar vi effekten av två gemensamma kraftmodeller, identitet och Hamming-vikt, på CNN-baserad sidokanalangrepps effektivitet. Resultaten visar att identitetsmaktmodellen är effektivare under samma träningsförhållanden. Slutligen visar vi att det är möjligt att återställa alla nyckelbyte med hjälp av CNN-modellen som utbildats en gång.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-253755
Date January 2019
CreatorsWang, Huanyu
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2019:109

Page generated in 0.002 seconds