Durante os últimos cinco anos, a nanotecnologia tem atingido avanços significativos em diversas áreas da ciência e tecnologia. Um dos assuntos que está sendo intensamente estudado pela comunidade científica é a intensificação de campo próximo (hot spot) que pode ser aplicada em dispositivos sensores com capacidade de detecção de apenas uma molécula e em nano-antenas ópticas aplicadas na fabricação de dispositivos plasmônicos. Neste sentido, as principais contribuições da presente tese são processos de fabricação de nanoestruturas metálicas e de silício e o estudo da intensificação de campo próximo denominada de pontos quentes (hot spots) nestas estruturas. As nanoestruturas metálicas de Au (ouro) foram obtidas a partir do processo de auto-organização de esferas de poliestireno. As esferas de poliestireno serviram como camada sacrificial (molde) para a obtenção de nanoestruturas metálicas organizadas. Sobre as estruturas de Au organizadas foram depositadas moléculas de cristal violeta para serem utilizadas como moléculas de prova (sondas) no monitoramento da existência dos pontos quentes com o auxílio do espalhamento Raman das moléculas. As nanoestruturas de Au possibilitaram uma intensificação do espalhamento Raman devido à intensificação do campo próximo na superfície metálica periódica de Au. As nanoestruturas e microestruturas de silício foram obtidas a partir da tecnologia de silício poroso. As propriedades do silício poroso foram moduladas através da implantação de íons de hidrogênio (H +) que possibilitou a formação de silício microporoso com forte emissão fotoluminescente (PL) e intensificação do espalhamento Raman superficial devido ao fenômeno de Raman ressonante. Sobre as estruturas macroporosas de silício foram adsorvidas moléculas de azul de metileno para serem utilizadas como moléculas de prova para monitoramento da intensificação do campo próximo e do efeito SERS no silício. A obtenção da intensificação de campo próximo em silício é uma contribuição completamente inédita, pois este fenômeno devia-se, até o momento, somente a materiais metálicos (nanoestruturas metálicas), mostrando sua existência também no silício. / During the last five years, nanotechnology has achieved significant progress in several areas of science and technology. One of the issues that are being intensively studied by the scientific community is the intensification of near-field (hot spot) that can be applied to devices with sensors capable of detecting a single molecule and nano-optical antennas used in the fabrication of plasmonic devices. In this sense, the main contributions of this thesis are processes for manufacture of metal and silicon nanostructures and the study of near-field intensification called hot spots in these structures. The metal nanostructures of Au (gold) were obtained from the process of self-assembling of polystyrene beads. The polystyrene beads were used as sacrificial layer (mold) for obtaining organized metallic nanostructures. On the structures of organized Au were deposited molecules of violet crystal to be used as proof of molecules (probes) to monitor the existence of hot spots with the help of Raman scattering of molecules. The Au nanostructures allowed an intensification of the Raman scattering due to the intensification of the near-field in the periodic Au surface. The microstructures and nanostructures of silicon were obtained using the porous silicon technology. The properties of porous silicon were modulated by the implantation of hydrogen ions (H +) that allowed the formation of microporous silicon which showed high photoluminescence emission (PL) and Raman scattering intensification of the surface due to the phenomenon of resonant Raman. Methylene blue molecules were adsorbed on the macroporous silicon structures to be used as probe molecule for the monitoring of near-field intensification and the SERS effect in silicon. The obtaining of near-field intensification in silicon is an entirely unprecedented contribution, because this phenomenon had been observed, so far, only on the metallic materials (metal nanostructures), showing its existence in the silicon too.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-13122011-122139 |
Date | 08 October 2009 |
Creators | Raimundo, Daniel Scodeler |
Contributors | Salcedo, Walter Jaimes |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0016 seconds