Return to search

Synthesis Of Zeolite-polymer Composites For Biological Applications

Zeolites are nanoporous crystalline aluminosilicates that are tasteless, odorless and nontoxic to humans. They can be tailored into antibacterial agents that are more cost effective than other conventional alternatives. Considering the increasing demand for enduring antibacterial agents, the potential uses of antibacterial zeolites are numerous in medical applications and for everyday household products. To produce antibacterial zeolites, the extra framework cations in the zeolite structures can be exchanged with silver ion (Ag+), the most commonly used antibacterial heavy metal ion due to its high stability, strong activity and broad spectrum. Utilization of antibacterial zeolite powders can be diversified when they are used as fillers in a polymer matrix. Polyurethanes (PU) are a class of polymers which can be prepared in wide range of physical structures with excellent mechanical properties. Ag+ loaded zeolites used as fillers in the PU matrix would contribute to the diversity and efficiency of the PU utilization in many applications including biomedical uses and consumer products.


In this study, three types of zeolites, namely / zeolite Beta, X and A with different pores sizes and SiO2/Al2O3 ratios were synthesized hydrothermally and treated with Ag+ containing solution for the exchange of cations. Composites were prepared by incorporation of sieved Ag+ exchanged zeolite particles into biomedical grade PU prepolymers which were prepared either in film or as sponge forms. Films were prepared by molding and foams were prepared in the presence of water as the blowing agent.

Liquid media antibacterial tests showed that all of the Ag+-zeolite powders were effective against E. coli at a concentration of 500 ppm zeolite in deionized water. To assess the antibacterial effect of composites against E. coli, disc diffusion tests were carried out. Bacterial growth inhibition zones formed around the composite samples were the evidence of the antibacterial activity in the vicinity of the surface. All three kinds of zeolites successfully introduced the desired antibacterial property to the biomedical grade PU both in elastomeric film and in the foam form. Mechanical characterization of the composites yield higher ultimate tensile strength, modulus of elasticity and elongation at break values compared to control PU. No significant change in thermal properties of the composites was observed. Hence mechanical and thermal characterization of the composites showed that zeolites serve for the reinforcement of the mechanical properties of the polymer and did not cause any deterioration in thermal properties.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12608537/index.pdf
Date01 July 2007
CreatorsKamisoglu, Kubra
ContributorsBac, Nurcan
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.002 seconds