Supervised learning requires labeled data which is cumbersome to produce, making it costly and time-consuming. SimCLR is a self-supervising framework that uses data augmentations to learn without labels. This thesis investigates how well cropping and color distorting augmentations work for two datasets, MPI3D and Causal3DIdent. The representations learned are evaluated using representation similarity analysis. The data augmentations were meant to make the model learn invariant representations of the object shape in the images regarding it as content while ignoring unnecessary features and regarding them as style. As a result, 8 models were created, models A-H. A and E were trained using supervised learning as a benchmark for the remaining self-supervised models. B and C learned invariant features of style instead of learning invariant representations of shape. Model D learned invariant representations of shape. Although, it also regarded style-related factors as content. Model F, G, and H managed to learn invariant representations of shape with varying intensities while regarding the rest of the features as style. The conclusion was that models can learn invariant representations of features related to content using self-supervised learning with the chosen augmentations. However, the augmentation settings must be suitable for the dataset. / Övervakad maskininlärning kräver annoterad data, vilket är dyrt och tidskrävande att producera. SimCLR är ett självövervakande maskininlärningsramverk som använder datamodifieringar för att lära sig utan annoteringar. Detta examensarbete utvärderar hur väl beskärning och färgförvrängande datamodifieringar fungerar för två dataset, MPI3D och Causal3DIdent. De inlärda representationerna utvärderas med hjälp av representativ likhetsanalys. Syftet med examensarbetet var att få de självövervakande maskininlärningsmodellerna att lära sig oföränderliga representationer av objektet i bilderna. Meningen med datamodifieringarna var att påverka modellens lärande så att modellen tolkar objektets form som relevant innehåll, men resterande egenskaper som icke-relevant innehåll. Åtta modeller skapades (A-H). A och E tränades med övervakad inlärning och användes som riktmärke för de självövervakade modellerna. B och C lärde sig oföränderliga representationer som bör ha betraktas som irrelevant istället för att lära sig form. Modell D lärde sig oföränderliga representationer av form men också irrelevanta representationer. Modellerna F, G och H lyckades lära sig oföränderliga representationer av form med varierande intensitet, samtidigt som de resterande egenskaperna betraktades som irrelevant. Beskärning och färgförvrängande datamodifieringarna gör således att självövervakande modeller kan lära sig oföränderliga representationer av egenskaper relaterade till relevant innehåll. Specifika inställningar för datamodifieringar måste dock vara lämpliga för datasetet.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-313677 |
Date | January 2022 |
Creators | Ingemarsson, Markus, Henningsson, Jacob |
Publisher | KTH, Hälsoinformatik och logistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2022:057 |
Page generated in 0.0033 seconds