When a genetic factor is being studied for more than one response variable, estimates of the genetic covariances are essential, specially in breeding programs. In a genetic covariance analysis, genetic and residual mean cross-products are obtained. Stochastically, to quantify the magnitude of the joint variation of two response variables due to genetic effect with respect to the variation due to residual effect may allow one to make inferences about the significance of the associated genetic covariance. In this study it is presented tests of significance for genetic covariance upon a twofold way: tests that take into account the genetic and environmental effects and tests that only consider the genetic information. The first way refers to tests based on the mean cross-products ratio via nonparametric bootstrap resampling and Monte Carlo simulation of Wishart matrices. The second way of testing genetic covariance refers to tests based on adaptation of Wilks\' and Pillai\'s statistics for evaluating independence of two sets of variables. For the first type of tests, empirical distributions under the null hypothesis, i.e., null genetic covariance, were built and graphically analyzed. In addition, the exact distribution of mean cross-products ratio obtained from variables normally distributed with zero mean and finite variance was examined. Writing computational algorithms in R language to perform the proposed tests was also an objective of this study. Only under certain conditions does the probability density function of the product of two random Gaussian variables approximate a normal curve. Therefore, studying the distribution of a mean cross-products ratio as a quotient of two Gaussian variables is not suitable. Tests based on mean cross-products ratio are related to both the value of the genetic covariance and the magnitude of the latter relative to the residual covariance. And both approaches (bootstrap and simulation) are more sensitive than the tests based only on genetic information. The performance of the tests based on mean cross-products ratio is related to the quality of the original data set in terms of the MANOVA assumptions, and the test statistic does not depend on the estimation of the matrix of genetic covariances ΣG. The adaptation of Wilks\' and Pillai\'s statistics can be used to test the genetic covariance. Their approximations to a χ21 distribution were checked and the accuracy of their inferences is related to the quality of G. / Quando um fator genético está sendo estudado em mais de uma variável de resposta, estimativas das covariâncias genéticas são essenciais, especialmente para programas de melhoramento. Em uma análise de covariância genética, produtos cruzados médios devido ao efeito genético, a partir do qual é obtida a covariância genética, e devido ao efeito residual são obtidos. Estocasticamente, quantificar a magnitude da variação conjunta de duas variáveis resposta devido ao efeito genético em relação à variação devida ao efeito residual pode permitir realizar inferências sobre a covariância genética associada. Neste estudo são apresentados testes de significância para a covariância genética de duas formas: testes que levam em conta os efeitos genéticos e ambientais (ou residuais) e testes que consideram apenas a informação genética. A primeira forma refere-se testes baseados na razão de produtos cruzados médios via bootstrap não paramétrico e simulação de matrizes Wishart pelo método de Monte Carlo. A segunda maneira de testar a covariância genética refere-se a testes com base em uma adaptação das estatísticas de Wilks e Pillai para avaliar a independência de dois conjuntos de variáveis. Para o primeiro tipo de testes, as distribuições empíricas sob a hipótese nula, ou seja, covariância genética nula, foram construídas e analisadas graficamente. Além disso, foi feito um estudo analítico da distribuição da razão de produtos cruzados médios obtidos a partir de variáveis normalmente distribuídas com média zero e variância finita. Escrever algoritmos computacionais em linguagem R para realizar os testes propostos também foi um dos objetivos deste estudo. Apenas sob certas condições a função de densidade de probabilidade do produto de duas variáveis aleatórias gaussianas aproxima-se da curva normal. Por conseguinte, o estudo da distribuição da razão de produtos cruzados médios como um quociente de duas variáveis gaussianas não é adequado. Os testes baseados na razão de produtos cruzados médios estão relacionados tanto com o valor da covariância genética quanto com a magnitude desta em relação à covariância residual. Ambas as abordagens (bootstrap e simulação) mostraram-se mais sensíveis do que os testes baseados apenas nas informações genéticas. O desempenho dos testes baseados na razão de produtos cruzados médios está relacionado à qualidade dos dados originais em termos das pressuposições da MANOVA, e a estatística de teste não depende da estimação da matriz de covariâncias genéticas ΣG. A adaptação das estatísticas de Wilks e Pillai pode ser usada para testar a covariância genética. As aproximações à distribuição Χ21 foi verificada. A precisão de suas inferências está relacionada a qualidade da matriz G.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-22092015-141749 |
Date | 17 July 2015 |
Creators | Silva, Anderson Rodrigo da |
Contributors | Dias, Carlos Tadeu dos Santos |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.009 seconds