L'objectif principal de cette thèse est de concevoir une méthode d'optimisation de structures qui jouit d'une description exacte (i.e. au moyen d'un maillage) de la forme à chaque itération du processus, tout en bénéficiant des avantages de la méthode des lignes de niveaux lorsqu'il s'agit de suivre leur évolution. Indépendamment, on étudie également deux problèmes de modélisation en optimisation structurale. Dans une première partie bibliographique, on présente quelques notions classiques, ainsi qu'un état de l'art sommaire autour des trois thématiques principales de la thèse - méthode des lignes de niveaux (Chapitre 1), optimisation de formes (Chapitre 2) et maillage (Chapitre 3). La seconde partie de ce manuscrit traite de deux questions en optimisation de formes, celle de la répartition optimale de plusieurs matériaux au sein d'une structure donnée (Chapitre 4), et celle de l'optimisation robuste de fonctions dépendant du domaine lorsque des perturbations s'exercent sur le modèle (Chapitre 5). Dans une troisième partie, on étudie la conception de schémas numériques en lien avec la méthode des lignes de niveaux lorsque le maillage de calcul est simplicial (et potentiellement adapté). Le calcul de la distance signée à un domaine est étudié dans le chapitre 6, et la résolution de l'équation de transport d'une fonction 'level set' est détaillée dans le chapitre 7. La quatrième partie (Chapitre 8) traite des aspects de la thèse liés à la modification locale de maillages surfaciques et volumiques. Enfin, la dernière partie (Chapitre 9) détaille la stratégie conçue pour l'évolution de maillage en optimisation de formes, à partir des ingrédients des chapitres 6, 7 et 8.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00916224 |
Date | 04 December 2013 |
Creators | Dapogny, Charles |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds