This research paper focuses on analog computers and creating a modular low-cost analog computer system in a single board computer form factor. The single-board analog computer will have the capacity to solve second-order differential equations. The capabilities and possibilities of the single board Analog computer will be explored as well as analog computing in general. The paper follows design science research methodology (DSRM) with the goal of creating and evaluating a working artifact. The artifacts' functionality is evaluated based on a demonstration of its ability to solve Mathieu’s differential equation as well as simulate a spring-mass dampening system. This paper proves that it is possible to create a low-cost analog computer in a modern form factor. The artifact is also placed in a larger contextual setting based on the empirical material provided where its value of it in a digital society is presented. For the world to continue its progression in computational power, but still, limit the already high energy usage, a drastic change is needed. This paper suggests adapting to analog/hybrid technology. To further the progression of analog/hybrid technology it must be made accessible to a wider group of people compared to today. The artifact in this paper offers a solution to this.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mau-53560 |
Date | January 2022 |
Creators | Ahlqvist, Carl Oskar, Ahlgren, Måns |
Publisher | Malmö universitet, Fakulteten för teknik och samhälle (TS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds