Blinking dynamics of CdSe/ZnS semiconductor quantum dots (QD) are characterized by (truncated) power law distributions exhibiting a wide dynamic range in probability densities and time scales both for off- and on-times. QDs were immobilized on silicon oxide surfaces with varying grades of hydroxylation and silanol group densities, respectively. While the off-time distributions remain unaffected by changing the surface properties of the silicon oxide, a deviation from the power law dependence is observed in the case of on-times. This deviation can be described by a superimposed single exponential function and depends critically on the local silanol group density. Furthermore, QDs in close proximity to silanol groups exhibit both high average photoluminescence intensities and large on-time fractions. The effect is attributed to an interaction between the QDs and the silanol groups which creates new or deepens already existing hole trap states within the ZnS shell. This interpretation is consistent with the trapping model introduced by Verberk et al. (R. Verberk, A. M. van Oijen and M. Orrit, Phys. Rev. B, 2002, 66, 233202).
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-122745 |
Date | 23 September 2013 |
Creators | Krasselt, Cornelius, Schuster, Jörg, von Borczyskowski, Christian |
Contributors | TU Chemnitz, Fakultät für Naturwissenschaften |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:article |
Format | application/pdf, text/plain, application/zip |
Source | Physical Chemistry Chemical Physics, 2011, 13, S. 17084 - 17092 |
Page generated in 0.0044 seconds