<p>Highly correlated quantum chemical methods have been appliedto study the photophysical properties of substituted benzenes.With the inclusion of spin-orbit coupling, the phosphorescencesof these molecules have been calculated usingMulti-CongurationalSelf- Consistent Field (MCSCF) quadraticresponse theory. The Herzberg-Teller approximation has beenadopted to evaluate the vibronic contributions tophosphorescence.</p><p>The performance of hybrid density functional theory (DFT) atthe B3LYP level is examined in comparison to the MP2, CCSD andCCSD(T) methods for the geometry and permanent dipole moment ofp-aminobenzoic acid. The time-dependent DFT/B3LYP method isapplied to calculate the two-photon absorption of a series ofZinc-porphyrin derivatives in combination with a two-statemodel. The transitions between excited singlet and tripletstates of Zinc and Platinum based organometallic compounds havebeen computed using DFT quadratic response theory. The resultsare used to simulate the non-linear propagation of laser pulsesthrough these materials utilizing a dynamical wave propagationmethod.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-1739 |
Date | January 2004 |
Creators | Rubio Pons, Oscar |
Publisher | KTH, Biotechnology, Stockholm : Bioteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, text |
Page generated in 0.0016 seconds