Return to search

Asymptotic expansion of the expected discounted penalty function in a two-scalestochastic volatility risk model.

In this Master thesis, we use a singular and regular perturbation theory to derive an analytic approximation formula for the expected discounted penalty function. Our model is an extension of Cramer–Lundberg extended classical model because we consider a more general insurance risk model in which the compound Poisson risk process is perturbed by a Brownian motion multiplied by a stochastic volatility driven by two factors- which have mean reversion models. Moreover, unlike the classical model, our model allows a ruin to be caused either by claims or by surplus’ fluctuation. We compute explicitly the first terms of the asymptotic expansion and we show that they satisfy either an integro-differential equation or a Poisson equation. In addition, we derive the existence and uniqueness conditions of the risk model with two stochastic volatilities factors.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-26100
Date January 2014
CreatorsOuoba, Mahamadi
PublisherMälardalens högskola, Akademin för utbildning, kultur och kommunikation
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds