Return to search

On Convolution Squares of Singular Measures

We prove that if $1 > \alpha > 1/2$, then there exists a probability measure $\mu$ such that the Hausdorff dimension of its support is $\alpha$ and $\mu*\mu$ is a Lipschitz function of class $\alpha-1/2$.

Identiferoai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/5369
Date January 2010
CreatorsChan, Vincent
Source SetsUniversity of Waterloo Electronic Theses Repository
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0018 seconds