On the 29th of August, the vessel Stena Scandica experienced a blackout. Before the blackout, 294 alarms were issued in 4 minutes. With the number of alarms, the operators could not prevent the blackout. The amount of information and the way it was presented became a hindrance to operators. They could not interpret their surroundings' information without fault from them. This interpretation is called situational awareness. This thesis will solve how information can be provided to operators without hindrance to situational awareness. The focus will be on the Swedish Navy's operators and their needs. The aim is to solve the problem by creating a system that provides situational awareness. The system will use the information on air- and seaborne targets from a radar and a camera display. Three research questions were proposed: how will the radar data structure be, how will it be ranked, and how will it be presented? The structure was expected to tell the targets' location, size, and movement. The ranking of the targets would tell if the targets were a threat to the naval operators. Lastly, the targets were expected to be presented with some of their information on a camera display. For the first question, the structure for both kinds of targets was constructed to meet the expectations. Two models were used to solve the second question. An artificial neural network and fuzzy c-means. The artificial neural network was chosen as it is one of the best classification algorithms. Fuzzy c-means were chosen since it can cluster similar behaviors together, therefore clustering high-threat targets together. Of these two models, the result showed that the artificial neural network was a better ranking method, with a higher accuracy of 92.9% for airborne targets and 80.6% for seaborne targets. A simulation was made to answer the third question and was built according to the expectations. The simulation only displayed the highest threat targets in the camera display. By presenting the high-threat targets, the operators received a better understanding of where the targets are in reality. In the future, studies should be conducted on implementation of the system on Swedish Navy vessels. For example, is there enough computational power for an artificial neural network? / Den 29 augusti drabbades fartyget Stena Scandica av ett strömavbrott. Innan strömavbrottet utlöste 294 larm inom 4 minuter, vilket gjorde det omöjligt för operatörerna att förhindra avbrottet. Mängden information och sättet den presenterades på blev ett hinder för operatörerna, vilket påverkade deras lägesbild. Arbete syftar till att lösa hur information kan tillhandahållas till operatörer utan att hindra deras situationsmedvetenhet, med fokus på den svenska marinens operatörer och deras behov. Detta arbete föreslår ett system som använder radardata och kameradisplayer för att tillhandahålla lägesbilden. Tre forskningsfrågor ställs: hur ska radarns datastruktur vara, hur ska den rankas, och hur ska den presenteras? Strukturen förväntas visa målens plats, storlek och rörelse. Rankningen ska indikera om målen utgör ett hot, och hög-hotmål ska presenteras på kameradisplayen. För att svara på den första frågan konstruerades strukturen för båda typerna av mål. För den andra frågan användes två modeller: ett artificiellt neuralt nätverk och fuzzy c-means. Det artificiella neurala nätverket visade sig vara den bästa metoden med en noggrannhet på 92,9% för luftmål och 80,6% för sjömål. En simulering gjordes för att svara på den tredje frågan, där endast de mest hotfulla målen visades på kameradisplayen. Detta gav operatörerna en bättre förståelse för var målen befann sig. Framtida studier bör undersöka systemets implementering på svenska marinens fartyg. Exempelvis om tillräcklig beräkningskraft finns för ett artificiellt neuralt nätverk.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-26316 |
Date | January 2024 |
Creators | Nilsson, Jonna, Lidh, Jesper |
Publisher | Blekinge Tekniska Högskola, Institutionen för matematik och naturvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds