Return to search

M-PSK and M-QAM Modulation/Demodulation of UWB Signal Using Six-Port Correlator

Nowadays high speed and high data rate communication are highly demanded. Consequently, wideband and high frequency transmitter and receivers should be designed. New transmitters and receivers should also have low power consumption, simple design and low manufacturing price in order to fulfill manufacturers’ requests for mass production. Having all above specifications, six-port correlator is a proper choice to be used as modulator and demodulator in transmitters and receivers. In this thesis the six-port correlator is introduced, modeled and simulated using Advanced Design System (ADS) software. A simple six-port transmitter/receiver system with a line of sight link is modeled and analyzed in BER, path length and noise terms. The modulation in this system is QAM, frequency is 7.5 GHz and symbol rate is 500 Msymbol/s. Furthermore two methods are proposed for high frequency and high symbol rate M-PSK and M-QAM modulation using six-port correlator. The 7.5 GHz modulators are modeled and simulated in ADS. Data streams generated by pseudo random bit generator with 1 GHz bandwidth are applied to modulators. Common source field effect transistors (FETs) with zero bias are used as controllable impedance termination to apply baseband data to modulator. Both modulators show good performance in M-PSK and M-QAM modulation.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-64413
Date January 2010
CreatorsA. Sani, Negar
PublisherLinköpings universitet, Fysik och elektroteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0015 seconds