Return to search

Diagnóstico de influência em modelos com erros na variável skew-normal/independente / Influence of diagnostic in models with errors in variable skew-normal/independent

Orientadores: Victor Hugo Lachos Dávila, Filidor Edilfonso Vilca Labra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T09:37:18Z (GMT). No. of bitstreams: 1
Carvalho_RignaldoRodrigues_M.pdf: 1849605 bytes, checksum: 07ea5638a2dbfa2227f9a949d4723bbf (MD5)
Previous issue date: 2010 / Resumo: O modelo de medição de Barnett é frequentemente usado para comparar vários instrumentos de medição. é comum assumir que os termos aleatórios têm uma distribuição normal. Entretanto, tal suposição faz a inferência vulnerável a observações atípicas por outro lado distribuições de misturas de escala skew-normal tem sido uma interessante alternativa para produzir estimativas robustas tendo a elegância e simplicidade da teoria da máxima verossimilhança. Nós usamos resultados de Lachos et al. (2008) para obter a estimação dos parâmetros via máxima verossimilhança, baseada no algoritmo EM, o qual rende expressões de forma fechada para as equações no passo M. Em seguida desenvolvemos o método de influência local de Zhu e Lee (2001) para avaliar os aspectos de estimação dos parâmetros sob alguns esquemas de perturbação. Os resultados obtidos são aplicados a conjuntos de dados bastante estudados na literatura, ilustrando a utilidade da metodologia proposta / Abstract: The Barnett measurement model is frequently used to comparing several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations whereas scale mixtures of skew-normal distributions have been an interesting alternative to produce robust estimates keeping the elegancy and simplicity of the maximum likelihood theory. We used results in Lachos et al. (2008) for obtaining parameter estimation via maximum likelihood, based on the EM-algorithm, which yields closed form expressions for the equations in the M-step. Then we developed the local influence method to assessing the robustness aspects of these parameter estimates under some usual perturbation schemes. Results obtained for one real data set are reported, illustrating the usefulness of the proposed methodology / Mestrado / Métodos Estatísticos / Mestre em Estatística

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306689
Date17 August 2018
CreatorsCarvalho, Rignaldo Rodrigues
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Vilca Labra, Filidor Edilfonso, 1964-, Lachos Dávila, Víctor Hugo, 1973-, Azevedo, Caio Lucidius Naberezny, Bolfarine, Heleno
PublisherUniversidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Estatística
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format110 p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0048 seconds