To facilitate examination for osteogenesis and follow up after craniotomy similar head models called phantoms are made. The head phantom should emulate the tissues from a real head. This requires that the realistic head phantom have the same electrical properties as relative permittivity (dielectric constant) and conductivity. Both must be validated and matched for right frequency spectrum. Validation measurements are performed by a coaxial slim probe connected to an Agilent Technologies E8364B network analyzer. The range of frequency measured is from 1 to 50 GHz, but matching will only be processed for 1 to 10 GHz. The resonance frequency for the antenna or sensor, which later will be used, is 2.4 GHz. The end results of the head phantom consists of three different tissues or layers (skin, bone and brain). Cavities will be created in the bone and will act as different defects or stages of re-growing bone. Phantom cube is done for examining the influence of implant in bone. Insertions of cube samples are made to emulate intermediates between implant and bone. Keywords: agar, BMP, body morphogenetic protein, bone implant, brain phantom, craniosynostosis, craniotomy, cube phantom, phantom, re-growing bone, skin phantom, skull phantom, tissue.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-256273 |
Date | January 2015 |
Creators | Jacob, Velander |
Publisher | Uppsala universitet, Fasta tillståndets elektronik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds